
Heuristic Move Pruning in Monte Carlo Tree Search
for the Strategic Card Game Lords of War

Nick Sephton∗, Peter I. Cowling∗, Edward Powley†, and Nicholas H. Slaven‡
∗York Centre for Complex Systems Analysis, Department of Computer Science, University of York, United Kingdom

Email: njs523@york.ac.uk, peter.cowling@york.ac.uk
†Orange Helicopter Games, York, United Kingdom.

Email: ed@orangehelicopter.com
‡Stainless Games, Isle of Wight, United Kingdom

Email: nick@stainlessgames.com

Abstract—Move pruning is a technique used in game tree
search which incorporates heuristic knowledge to reduce the
number of moves under consideration from a particular game
state. This paper investigates Heuristic Move Pruning on the
strategic card game Lords of War. We use heuristics to guide our
pruning and experiment with different techniques of applying
pruning and their relative effectiveness. We also present a
technique of artificially rolling forward a game state in an attempt
to more accurately determine which moves are appropriate to
prune from the decision tree. We demonstrate that heuristic move
pruning is effective in Lords of War, and also that artificially
rolling forward the game state can increase the effectiveness of
heuristic move pruning.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a highly effective tree
search technique which originated in 2006 [1], [2], [3]. It has
seen success in many areas, and has seen specific success
in contributing towards a strong player for Go, which was
previously a very challenging target. MCTS is a tree search
technique which uses guided forward simulations of a game
to estimate the value of potential moves. Many enhancements
to MCTS have been proposed, with varying degrees of effec-
tiveness [4].

A number of these enhancements focus on pruning the
MCTS tree, to remove sections of the tree from consideration.
If poor sections of the tree are removed from consideration,
the following tree search should converge more quickly upon
a strong solution. Some methods of pruning also look to
remove trap states [5], which are states that appear strong
to a search agent, but are actually guaranteed losses, or
simply very weak. Pruning is split into Hard Pruning, which
permanently removes sections of the tree, and Soft Pruning,
which temporarily removes sections of the tree, but then adds
them back into the search at some later point.

In this paper we use heuristic hard pruning to reduce the
branching factor of the search tree and demonstrate that this
produces stronger play. We then combine heuristics to produce
multi-heuristic agents which are played-off against the single
heuristic agents to determine their relative playing strengths.

Finally, we investigate pruning using State-Extrapolation.
For the initial heuristic pruning tests, we prune moves based
on a heuristic evaluation of the game state after the move
is made. When pruning a move using state-extrapolation, we

move the game forward until just before the next opponent
decision, then determine the suitability of the move by the
heuristic evaluation of that state. This applies both in our
chosen domain, Lords of War, and in many other domains
where a player move consists of a series of linked decisions
before the opponent has the opportunity to react. We show that
this technique improves the strength of the search by allowing
the heuristics to evaluate a more representative game state.
We then compare State-Extrapolation across a selection of the
strongest heuristics we have used, and examine its comparative
effect on play strength for those agents.

The remainder of this paper is organised as follows. In
section 2, we present a summary of related works on MCTS
and associated move pruning techniques. Section 3 discusses
both the game we selected for experimentation and the heuris-
tic knowledge we have chosen to incorporate in our move
pruning techniques. In section 4 we discuss our experimental
methods and the exact trials that we performed to test our
pruning techniques. Section 5 presents our results, and section
6 our conclusions and some notes on potential future work.

II. RELATED WORK

A. Monte Carlo Tree Search (MCTS)

An early adaptation of more traditional tree search tech-
nologies, Monte Carlo Tree Search (MCTS) samples playouts
to improve the specificity of the tree search and remove
the need for knowledge about the game. While heuristic
knowledge can greatly improve the performance of MCTS,
regular operation without this knowledge can locate effective
move decisions within the search space.

Since its inception in 2006 [1], [2], [3] a great deal of
further research has continued on MCTS, and it has seen
much success across many fields, specifically in the highly
challenging game Go [6], which has traditionally proved very
difficult for techniques such as minimax search.

MCTS is an incremental process which constructs a search
tree representing the section of the decision space containing
strong decisions. By running many thousands of playouts
of the game from the root state and collating the rewards
from terminal game states, the collected statistics provide a
strong indication of the location of strong solutions. One of
the strengths of MCTS is that the search tree grows in a

Algorithm 1 Basic MCTS Process Summary
function TREESEARCH(s0)

n0 = new TreeNode(s0)
while ti < tmax do

n1 ← treePolicy(n0)
r1 ← defaultPolicy(n1.s)
backup(n1, r1)

return bestChild(n0).a

asymmetrical manner, using a tree policy which balances the
effect from exploiting lines of play which are indicated to be
strong versus exploring new areas of the decision space.

The basic MCTS algorithm is made up the steps below:

• Selection: On each iteration, the algorithm moves
through the tree guided by the tree policy until it
reaches a node which has unexpanded children or a
terminal node.

• Expansion: If the selected node has unexplored moves,
then one (or more) nodes are added to the tree to
represent these moves.

• Simulation: The default policy guides a simulation of
the game until a terminal state.

• Back-propagation: The simulation result is backed
up through the ancestor nodes of the selected node,
updating statistics until it reaches the root node.

B. Upper Confidence Bound applied to Trees (UCT)

The term Upper Confidence Bound applied to Trees (UCT)
describes the use of MCTS with a default policy of random
selection, and a specific tree policy named UCB1. UCB1 treats
the choice of a child node as a multi-armed bandit problem [3],
[7], and selects the child node that has the best expected reward
as approximated by Monte Carlo simulations.

When the tree policy is required to determine which child
node should be examined for expansion and simulation, it uses
the UCB1 equation (equation 1) to make this determination. In
equation 1, X̄i is the average reward from currently examined
node (i), C is the Exploration Bias, n is the number of visits
to the parent node of i, and ni is the number of visits to i.

UCB1 = X̄i + C

√
2 lnn

ni
(1)

UCB1 balances exploration of new lines of play against
exploitation of existing strong plays by scaling the number
of visits to a given node against the rewards from that play
through.

Kocsis and Szepesvári [3], [7] showed optimality of UCT
in converging upon an optimal decision when given sufficient
iterations. UCT will frequently find good move decisions even
with a rather modest number of iterations.

C. Move Pruning

Move Pruning describes the process by which a number
of branches of a game tree are removed from consideration
(hard pruning) or are de-prioritised from consideration, but
may be searched later (soft pruning). Move pruning has been
shown to be a powerful approach when applied with traditional
minimax techniques [8], and has shown some strength when
applied with MCTS [9]. Heuristic pruning has been shown
to be effective in a wide range of games, most notably in
MOHEX [10], a 2009 world champion Hex player.

A very well-known pruning approach is Alpha-beta Prun-
ing [11] is an enhancement to minimax search, which has
long been the algorithm of choice for playing combinatorial
games [12]. The process of Alpha-beta Pruning examines each
state in the tree using a heuristic, and α (the minimum score
that the maximising player can obtain) and β (the maximum
score that the minimising player can obtain) are evaluated.
If at any point β becomes smaller than α, the branch is
“pruned”, as it cannot be a branch of optimal play, and need not
be explored. Alpha-beta pruning is not a heuristic technique,
however application in combination with minimax search is
recognised as near universal. Although alpha-beta pruning does
not itself rely on heuristics, its efficiency (i.e. how much of
the tree it prunes) depends on the order in which the moves
are searched, and the heuristic knowledge is often applied to
choose a good move ordering.

Progressive Unpruning [13] describes a process by which
child nodes are added as normal to any node p in the MCTS
tree until the number of visits np to a node equals a predefined
threshold T . At this point, a large number of child nodes are
pruned, and with each further game that plays through p, these
moves are slowly “unpruned” (made re-available for selection
& simulation). Progressive unpruning has been shown to be
very effective, particularly when combined with Progressive
Bias [13]. Progressive unpruning is very similar to an inde-
pendently proposed scheme called Progressive Widening by
Coulom [14]. These two techniques offer an advantage over
standard hard pruning as they immediately provide the benefit
of hard pruning, but then allow for the possibility that strong
moves may have been accidentally pruned by “unpruning”
moves later in the search. Given enough budget, the entire
tree will eventually be considered by progressing unpruning.

Another strategy often used for implementing heuristic
knowledge is Progressive Bias [13], which modifies the tree
policy and therefore guides node selection. The guidance
provided by the heuristic knowledge is slowly reduced as more
iterations pass through the tree, providing strong guidance
initially, and in the limit no heuristic guidance.

III. THE LORDS OF WAR GAME

A. Lords of War

Lords Of War1,2 is a two-player strategic card game by
publisher Black Box Games. A board is used for card place-
ment, and the relative positions of the cards on the board are
the main strategic interest. A player wins when they eliminate

1http://lords-of-war.com/
2http://boardgamegeek.com/boardgame/135215/

lords-of-war-orcs-versus-dwarves

twenty of an opponent’s cards, or they eliminate four of their
opponent’s Command Cards. Command cards are significantly
more powerful than other cards, but placing them onto the
board carries a risk that they may be eliminated.

The game board is 7 × 6 squares each of which can hold
a single card. Cards have between 0 and 8 attacks, each with
a strength value, and a directionality towards an orthogonal
or diagonally adjacent square. Attacks from multiple cards
can be combined to eliminate an opponent’s card with a high
defence value. Some cards also have ranged attacks which can
eliminate (or contribute towards the elimination) of opponent’s
cards which are not adjacent. In regular play, cards can only
be placed so as to attack enemy cards, however Support Cards
also have additional placement rules allowing them to be
placed next to friendly cards instead of attacking enemy cards.

On each player’s turn, they are required to place exactly one
card, then process combat to identify and remove eliminated
cards, then they have a choice of either drawing a new card
from their deck, or retreating a friendly unthreatened card from
the board. The official Lords of War rulebook and a variety of
other resources are available on the Lords of War website3.

A normal game rarely extends beyond 50 turns, as most
moves (particularly strong moves) result in a capture. Once an
average human player has made 25 moves, they have probably
captured more than 20 cards, and thus the game would have
completed. Of course the games can end much sooner if
command cards are placed carelessly or last much longer if
players play cautiously. Games with MCTS agents last on
average between 30 and 60 turns, depending on the nature
of the agent.

Our experience with Lords of War has revealed that it
commonly has a mid-game branching factor of 25-50, making
move selection challenging. Previous work on Lords of War
has studied the impact of parallelization on MCTS [15].

B. Heuristic Knowledge

We applied our own experience of Lords of War in the
creation of several functions which may be powerful for
examining a state. These functions (fj) are applied to a specific
game state Si such that fi : S → R, and are intended
to form building blocks for construction of heuristics which
will be used to measure fitness of a state (correlated to the
probability that the assessing player will win from that state).
Each function is performed including only cards of the active
player unless the otherwise specified by the modifier opp, in
which case the opponent’s cards are considered instead (e.g.
foppj). The set Bi is the set of all the active player’s cards
on the board in state Si (or the opponent’s cards if opp is
used). The set Hi, Ei and Di are similarly the sets of cards
in the players hand, eliminated pile and deck respectively. The
following functions were used to simplify the expressions for

3http://www.lords-of-war.com/

the heuristics:

f1(Si) = |Bi|

f2(Si) = |Ei|

f3(Si) =
∑
b∈Bi

(b.DefenceV alue)

f4(Si) = |{b ∈ Bi|b.Threat() > 0}|

f5(Si) = |{g ∈ Ei|g.IsCommand()}|

f6(Si) =
∑
b∈Bi

ma(b)

f7(Si) =
∑
b∈Bi

mb(b)

f8(Si) =
∑
b∈Bi

mc(b)

f9(Si) =
∑
b∈Bi

md(b)

f10(Si) =
∑
b∈Bi

me(b)

f11(Si) =
∑
b∈Bi

mf (b)

To briefly explain these functions, f1(Si) counts all the active
player’s cards, f2(Si) counts all the active player’s dead cards,
f3(Si) sums all defence values for all the active player’s
cards, f4(Si) counts all squares threatened by the active
player’s cards, and f5(Si) counts all the active player’s dead
commander cards. Functions f6(Si) − f11(Si) refer use the
heatmaps in Figure 1 to assign values to the active player’s
cards based on their position, and then sums those scores.
The functions were then used to create the State Evaluation
Functions listed below:

a) Simple Card Count (h1): This heuristic was selected
for testing partially because it was the simplest of the heuris-
tics, but also because it appeared to be a very strong contender.
h1 assigns a weight of +1 for each card on the board and a
weight of -1 for each card in the graveyard, negating these
weights for opponent cards.

h1(Si) = (f1(Si)− f2(Si))− (fopp1 (Si)− fopp2 (Si))

b) Average Defence (h2): This heuristic was selected
for testing because it would appear that strong players often
play defensively in Lords of War, and this heuristic would
hopefully mimic that style of play. This heuristic measures the
difference between player and opponent of the mean defence
value of cards on the board. In the case when a player has no
cards on the board, we assume a value of 0 for that player’s
contribution to the value of h2.

h2(Si) = (f3(Si)/|Bi|)− (fopp3 (Si)/|Bopp
i |)

c) Threatened Area (h3): This heuristic counts the
number of empty or opponent occupied squares on the board
that are directly threatened (under attack by adjacent card’s

non-ranged attacks) by active player cards. The same calcula-
tion is made for the opponent and subtracted from the total.
This heuristic was selected so as to consider the positional
elements of the game.

h3(Si) = f4(Si)− fopp4 (Si)

d) Simple Card Count with Dead Commander adjust-
ment (h4): This heuristic is similar to h1, except command
cards in the dead pile count for two cards instead of one.
The adjustment to h1 is due to our own play experience and
understanding of the importance of command cards to the
game (as it is possible that an AI may be too willing to lose
its first 2-3 command cards in combat).

h4(Si) = (f1(Si)− f2(Si)− f5(Si))−
(fopp1 (Si) − fopp2 (Si)− fopp5 (Si))

e) Active Player Average Defence (h5): This heuristic
was a modification upon h2 to remove the subtraction of an
opponent score from the total. This was tested as a heuristic
mainly because h2 seemed like such a strong candidate, yet
performed so weakly in tests.

h5(Si) = (f3(Si)/|Bi|)

f) Basic Heat Maps (h6 − h11): This set of heuristics
is similar to h1, except each card is assigned different values
depending on its placement location, then these values are
summed to create the state score. When the modifier “opp”
is used, the heat maps are reflected about the horizontal axis
to account for the opponent playing from the opposite side
of the table (this is only of significance to ma and mb). The
maps for these heuristics are shown in Figure 1. We would
expect these heuristics to be poor when used in isolation, but
perhaps stronger when combined with another heuristic which
measures strategic strength, such as h1 or h5.

h6(Si) = f6(Si)

h7(Si) = f7(Si)

h8(Si) = f8(Si)

h9(Si) = f9(Si)

h10(Si) = f10(Si)

h11(Si) = f11(Si)

During pruning, we apply the appropriate heuristic (hi) to the
state that results from applying the move under examination
to the current state. We then prune all except the top scoring
moves. The number of moves that each heuristic selects is
referred to as the Hard Pruning Limit (HPL).

IV. SOLUTION METHODS

A. Single Heuristic Experimentation

During our experiments, values ranging from 1 to 35 were
used for HPL. Each of the heuristics were run against Plain
UCT using 10000 iterations. The following experiments were
each repeated 500 times in each case, where UCT is plain
UCT, and UCT(hi[n]) is UCT using hi for hard pruning with
a HPL of n, and the value of i runs from 1 to 11 in each case.

3 3 3 3 3 3 3 0 0 0 0 0 0 0 3 2 1 0 1 2 3

2 2 2 2 2 2 2 1 1 1 1 1 1 1 3 2 1 0 1 2 3

2 2 2 2 2 2 2 1 1 1 1 1 1 1 3 2 1 0 1 2 3

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 2 1 0 1 2 3

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 2 1 0 1 2 3

0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 2 1 0 1 2 3

0 1 2 3 2 1 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3

0 1 2 3 2 1 0 0 1 2 2 2 1 0 3 2 1 1 1 2 3

0 1 2 3 2 1 0 0 1 2 3 2 1 0 3 2 1 0 1 2 3

0 1 2 3 2 1 0 0 1 2 3 2 1 0 3 2 1 0 1 2 3

0 1 2 3 2 1 0 0 1 2 2 2 1 0 3 2 1 1 1 2 3

0 1 2 3 2 1 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3

m a m b m c

m d m e m f

Fig. 1. Heat Maps

• UCT vs UCT(hi[1])

• UCT vs UCT(hi[2])

• UCT vs UCT(hi[5])

• UCT vs UCT(hi[10])

• UCT vs UCT(hi[15])

• UCT vs UCT(hi[20])

• UCT vs UCT(hi[25])

• UCT vs UCT(hi[30])

Due to the lack of success of h2, an experiment with a
negated value was attempted as well, but it was completely
unsuccessful, winning 0 games in all tests. The clear trends
shown in the results for the improvement of the results with an
increase in HPL prompted further experimentation with higher
pruning limits, so further experiments were run increasing the
pruning limit until the Win% exhibited a decrease. Results of
this experiment are given in section V-B.

B. Multi-Heuristic Experimentation

In later tests, multiple heuristics were used in combination.
An AI using multiple heuristics would fulfil the HPL from each
heuristic in turn, then combine the obtained results, removing
any duplicate entries. This results in a list of top moves which
numbers between HPL and (n × HPL), where n is the
number of heuristics being used in the agent.

Our strongest single heuristic (h4), was combined with
each of the other heuristics in an attempt to create a strong
multi-heuristic agent. These new agents were then played
against the original h4 to determine their strength against our
strongest single heuristic agent. Results of this experiment are
given in section V-C.

C. State-Extrapolation

In all previous experiments, we have pruned moves based
on the score obtained from the state following that move.
In these State-Extrapolation experiments, we artificially roll
forward the game state to some forward point in the game

and prune based on the state at that point. This has the effect
of running through the combat step (when ranged attacks are
assigned, and dead cards are removed from the board), and
thus should provide a better estimation of the strength of the
move.

There are multiple ways in which we can roll forward. The
simplest way is to randomly select moves until some point
in the future, most logically the opponent’s next move. We
can also look to perform a searches over the sub-tree from
the remainder of the turn. In this paper, we experiment with
randomly rolling the state forward until the opponent’s next
move.

We expect State-Extrapolation to be a strong technique, as
it should give a more accurate representation of the actual game
state. For example, rolling forward past the end of combat step
would allow us to observe clearly which cards will be removed,
and thus the actual layout of the game board.

Strength of play in Lords of War is closely tied to positional
elements of card placement. As such, the deployment move
is the most strategically important move. The selection of
whether to remove a card from the battlefield or draw a
new card is comparatively simple, however it is occasionally
complex. The simplest choice is that of selecting a target
for a ranged attack. The target is normally obvious, as the
situation in which more than one destroyable target is available
is uncommon, and when there is an available target which
can be destroyed with a ranged attack, performing that ranged
attack is almost always the stronger decision. If there is no such
target to destroy with a ranged attack, then the move selected
is irrelevant and there is little point wasting time selecting a
move.

V. RESULTS

A. Game Engine

Lords of War and our experimental MCTS engine were
implemented in C++. All experiments were run on a cluster
of seven PCs, of various specifications. The full game of Lords
of War features hidden information, as players draw a private
hand of cards from a shuffled deck. We ignore this aspect
of the game in these experiments, assuming that both hands
and decks are fully visible to both players. The game is still
highly playable by human players in this form, and plays rather
similarly to the normal hidden information game.

B. Single Heuristic Results

The results for the initial heuristic tests are shown in
Figure 2, 3 & 4.

A Hard Pruning Limit of below 5 seems poor for all
heuristics tested, with all such agents consistently losing to
Plain UCT. If a heuristic was a poor indicator of move strength,
we would expect to see a slow and roughly linear increase
in strength as the HPL rises, which should come to a halt
at approximately 50% win rate. This is due to a high HPL
being equivalent to using no heuristic at all, as no moves will
be pruned by either method. We can see this behaviour in
the agent using h3, and all the heat map heuristics. This is
consistent with our belief that the heat maps in isolation would
be poor pruning heuristics.

h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h 11

1 6.0% 0.0% 2.4% 11.6% 6.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 22.0% 0.0% 7.8% 24.8% 15.8% 0.8% 2.2% 0.6% 1.2% 3.2% 2.8%

5 58.0% 0.0% 18.8% 60.8% 50.0% 3.8% 3.8% 4.0% 3.4% 0.0% 0.0%

10 77.6% 0.0% 35.6% 82.6% 77.6% 13.8% 14.4% 17.0% 17.0% 6.8% 11.2%

15 86.8% 0.2% 47.8% 90.0% 81.4% 30.8% 25.8% 29.6% 28.8% 14.2% 16.6%

20 85.4% 0.0% 47.6% 88.6% 83.6% 25.6% 31.8% 28.6% 33.6% 29.0% 33.4%

25 80.0% 0.0% 58.6% 83.2% 83.6% 39.6% 41.0% 35.4% 34.2% 44.2% 27.8%

30 79.4% 0.8% 56.0% 79.0% 82.8% 38.0% 38.8% 42.0% 40.4% 50.0% 41.6%

Fig. 2. Win% of single heuristic agents vs Plain UCT at varying HPL

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 5 10 15 20 25 30

W
in

%

Hard Pruning Limit (HPL)

h1

h2

h3

h4

h5

Fig. 3. h1 - h5 vs. Plain UCT player

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25 30

W
in

%

Hard Pruning Limit (HPL)

h6
h7
h8
h9
h10
h11

Fig. 4. h6 - h11 vs. Plain UCT player

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

h4h1 h4h2 h4h3 h4h5 h4h6 h4h7 h4h8 h4h9 h4h10 h4h11

W
in

%

Multiheuristic Agent

vs Plain UCT

vs h4

Fig. 5. Win% of multi-heuristic agents (HPL 15)

The strongest single heuristic results appear between a
HPL of somewhere between 15 and 25, with the strongest
individual result being h4 at a HPL of 15. h1 and h4 are
very similar heuristics. However as h4 performs better, we can
see that including an adjustment for command cards within
the heuristic has increased its effectiveness. This could be
considered for future heuristics, and may increase their play
strength.

The most effective heuristics seem to be h1 and h4, with
h5 being a strong third. It is surprising that h2 performed so
poorly given that h5 performed so well. This is possibly due to
h2 being highly susceptible to strong play from an opponent,
or possibly that the state with no cards on the board is stronger
than the heuristic indicates (for example, having no cards on
the board while your opponent only has one is not as poor a
position as h2 would indicate, since it means that you have a
target for attack where your opponent has none.)

C. Multi-heuristic Results

The results of the experimentation with multi-heuristic
agents are displayed in Figure 5. The combination of h4 with
any of the heat map heuristics causes a strong improvement
in performance, and while none clearly exceed the original
performance of h4 against plain UCT, they perform at about
the same level. This is likely due to the moves being selected
by h4 being responsible for most of the strong decisions. When
each of these agents are played against h4, the agent h4h5
performs the best, suggesting that h5 is contributing towards
the success of h4. Of the multi-heuristic agents using heat
maps, the agents using h4h6, h4h7 and h4h10 show the best
performance. This confirms our experience that playing near
the front or back of the board is strong, but suggests that
playing in the centre of the board is stronger than playing at
the edges. This may indicate that controlling the centre of the
board is more important than the benefit of playing your cards
against the edge in order to protect their weaker sides. This
difference in performance may also be due to human players
trying to place blank card sides (sides with no attack value)
against the board edges, where as no such consideration is
included in the agents.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

No State Extrapolation

State Extrapolation

Fig. 6. Effects of applying State-extrapolation to heuristic agents

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

h1R h2R h3R h4R h5R h6R h7R h8R h9R h10R h11R h4h5R

W
in

%

Agent

vs Plain UCT

vs H4

Fig. 7. Win% of agents using state-extrapolation

D. State Extrapolation

We can see from comparison of the original agents versus
those using state-extrapolation that there is little difference in
win% in most cases (see Figure 6). However the difference
in two specific cases is significant, those of agents using h10
and h11, and for all but one heuristic state extrapolation gives
slightly stronger results.

Heuristics h10 and h11 use heat maps which are exact
opposites of each other (see Figure 1). Our experience of Lords
of War is that the strength of a move can be closely associated
to proximity to a board edge. The difference in effect upon
these two heat maps and the other heat maps (h6 − h9) can
likely be attributed to this difference.

Figure 7 shows us that using state extrapolation has
strengthened the h4R agent (where R denotes the use of state
extrapolation), displaying a win rate of approximately 80%
against our previous strongest single heuristic agent, h4. It is
also worth noting that h1R wins approximately 50% of games
against h4.

VI. CONCLUSIONS & FUTURE WORK

A. Conclusions

In this paper, we experimented with heuristics in two
general categories; heuristics that drew statistics from the cards
in the game, and heuristics that used heat maps to prioritise
card placement in specific positions. Overall the first category
proved the most effective, particularly the simplest heuristics
that merely totalled number of cards. The heat map heuristics
were generally ineffective, however they did show the largest
relative improvement from state-extrapolation.

While state-extrapolation did have an effect upon playing
strength in some cases, it was only effective in improving
agent strength in certain cases, most notably h10 & h11.
This is possibly due to the fact that placing cards around the
edges and/or the centre is strategically important (as our own
experience would suggest), however the strategic impact is
not always immediately apparent from the game state halfway
through a player’s move decisions. As discussed earlier, the
heat maps alone were not expected to create strong agents, and
the application of state extrapolation to h10 & h11 may have
revealed that placing around the edges or centre is a strong
move, and thus that these two maps are actually superior to
the other heat maps.

B. Future Work

It would be of interest to look at other methods of per-
forming state extrapolation, more specifically other methods
of searching the sub-tree that is traversed before the state
is analysed. In other games where this sub-tree is not as
simple, more advanced techniques may be appropriate to
ensure reasonable decisions are being made.

We would expect heuristics which considered availability
of squares, specifically those around the edges of the board,
would be good candidates for creating a strong agent, and it
would be of interest to explore such heuristics in a future paper.
The possibility of evolving heat maps rather than designing
them by hand would also be of interest [16].

It would be of interest to investigate the manner in which
moves are selected by heuristics, particularly in multi-heuristic
agents. Perhaps a move could be prioritised if it was selected
by multiple heuristics, or perhaps moves that are only selected
by a single heuristic could be soft-pruned until later stages
of the search. Also, examining the total number of moves
returned by multi-heuristic agents (and the difference from the
maximum of n×HPL) could be interesting.

The Application of progressive techniques to heuristic
agents in Lords of War would also be of interest, as it is
entirely possible that the success of certain agents is being
limited by regular exclusion of promising moves, which would
be otherwise reintroduced at a later point in the search by a
progressive technique.

ACKNOWLEDGEMENTS

The work displayed here was supported by EPSRC (http:
//www.epsrc.ac.uk/), the LSCITS program at the University
of York (http://lscits.cs.bris.ac.uk/), and Stainless Games Ltd
(http://www.stainlessgames.com/).

We thank Black Box Games for their support in working
with their game Lords of War.

REFERENCES

[1] G. M. J.-B. Chaslot, J.-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and
H. J. van den Herik, “Monte-Carlo Strategies for Computer Go,” in
Proc. BeNeLux Conf. Artif. Intell., Namur, Belgium, 2006, pp. 83–91.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.97.8924\&rep=rep1\&type=pdf

[2] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search,” in Proc. 5th Int. Conf. Comput. and Games,
LNCS 4630, Turin, Italy, 2007, pp. 72–83. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1777826.1777833

[3] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,”
in Euro. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Germany: Springer, 2006, pp.
282–293. [Online]. Available: http://www.springerlink.com/index/
d232253353517276.pdf

[4] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comp.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=6145622

[5] R. Ramanujan, A. Sabharwal, and B. Selman, “On Adversarial Search
Spaces and Sampling-Based Planning,” in Proc. 20th Int. Conf. Automat.
Plan. Sched., Toronto, Canada, 2010, pp. 242–245.

[6] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for
Monte-Carlo Go,” in Proc. Adv. Neur. Inform. Process. Syst., Vancouver,
Canada, 2006. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.108.7504\&rep=rep1\&type=pdf

[7] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
Search,” Univ. Tartu, Estonia, Tech. Rep. 1, 2006. [Online]. Available:
http://www.sztaki.hu/∼szcsaba/papers/cg06-ext.pdf

[8] B. Bouzy, “Move Pruning Techniques for Monte-Carlo Go,” in
Proc. Adv. Comput. Games, LNCS 4250, Taipei, Taiwan, 2005,
pp. 104–119. [Online]. Available: http://www.springerlink.com/index/
q5351066r8h62285.pdf

[9] J. A. M. Nijssen and M. H. M. Winands, “Monte Carlo Tree Search for
the Hide-and-Seek Game Scotland Yard,” IEEE Trans. Comp. Intell. AI
Games, vol. 4, no. 4, pp. 282–294, Dec. 2012. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6266709

[10] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo
Tree Search in Hex,” IEEE Trans. Comp. Intell. AI Games,
vol. 2, no. 4, pp. 251–258, 2010. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=5551182

[11] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed. Upper Saddle River, New Jersey: Prentice Hall,
2009. [Online]. Available: http://books.google.com/books?hl=en\&lr=
\&id=8jZBksh-bUMC\&pgis=1

[12] R. Ramanujan, A. Sabharwal, and B. Selman, “On the
Behavior of UCT in Synthetic Search Spaces,” in Proc. 21st
Int. Conf. Automat. Plan. Sched., Freiburg, Germany, 2011.
[Online]. Available: http://www.informatik.uni-freiburg.de/∼icaps11/
proceedings/mcts/ramanujan-et-al.pdf

[13] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W.
H. M. Uiterwijk, and B. Bouzy, “Progressive Strategies for Monte-Carlo
Tree Search,” New Math. Nat. Comput., vol. 4, no. 3, pp. 343–
357, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.77.9239\&rep=rep1\&type=pdf

[14] R. Coulom, “Computing Elo Ratings of Move Patterns in the Game of
Go,” Int. Comp. Games Assoc. J., vol. 30, no. 4, pp. 198–208, 2007.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.159.5614\&rep=rep1\&type=pdf

[15] N. Sephton, P. I. Cowling, E. J. Powley, D. Whitehouse, and N. H.
Slaven, “Parallelization of Information Set Monte Carlo Tree Search,”
in IEEE Congress on Evolutionary Computation (to appear), 2014.

[16] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning Non-Random
Moves for Playing Othello: Improving Monte Carlo Tree Search,” in
Proc. IEEE Conf. Comput. Intell. Games, Seoul, South Korea, 2011,
pp. 305–312.

