
Tainan, Taiwan  August 31, 2015 – September 2, 2015 

Emergent bluffing and inference with Monte Carlo
Tree Search

Peter I. Cowling
Department of Computer Science

York Centre for Complex Systems Analysis

University of York, UK

Email: peter.cowling@york.ac.uk

Daniel Whitehouse
Hebe Works

Leeds, UK

Email: dan@hebeworks.com

Edward J. Powley
The MetaMakers Institute

Academy for Innovation and Research

Falmouth University, UK

Email: edward.powley@falmouth.ac.uk

Abstract—In many card and board games, players cannot
see the whole game state, with different players seeing different
parts of the state. In such games, gathering of information
(inference) is a key strategic aspect, to which information
hiding (bluffing, among other techniques) is an important
countermeasure. Monte Carlo Tree Search (MCTS) is a powerful
general-purpose technique for decision making in games. MCTS
rose to prominence through successes in combinatorial board
games such as Go, but more recently has demonstrated promise
in card, board and video games of incomplete information.
MCTS can construct robust plans in stochastic environments
(making it strong in some games), but in its vanilla form is
unable to infer or bluff (making it weak in games where this
is a central feature).

In this paper, we augment MCTS with mechanisms for
performing inference and bluffing. Like all algorithms based on
game tree search, MCTS implicitly constructs a model of the
opponents’ decision processes. We show that this model can be
repurposed to perform an approximation of Bayesian inference.
We also obtain bluffing behaviour by self-determinization (in-
troducing “impossible” worlds into the agent’s pool of sampled
states). We test our algorithms on The Resistance, a popular
card game based around hidden roles.

I. INTRODUCTION

Much of the classical study of game AI focused on games
of perfect information such as Checkers, Chess and Go: the
state of the game and the actions of the opponent are fully
observable. More recent studies have focused on games of
imperfect information such as Bridge and Poker: players
can make only partial observations of the game state and
opponent actions. In particular, the player can narrow down
the current state of the game to a set of possibilities, called
an information set, but generally not to a single state.

An important strategic aspect of imperfect information
games is the gathering and hiding of information. In many
games players can perform inference to determine which
states in the information set are more likely than others,
based on opponent actions. For example in Poker, if Alice
makes a large bet then her opponents might infer that she has
a strong hand. However if players are making reasonable
inferences, this can be exploited by bluffing: deliberately
choosing misleading actions. For example in Poker, Alice
might make a large bet in an attempt to convince her
opponents that her hand is stronger than it is. Inference can
also be countered by information hiding: choosing actions

intended not to give away any information. For example in
Poker, if Alice bets conservatively then Bob may be left
unsure as to the strength of her hand.

Information Set Monte Carlo Tree Search (ISMCTS) [1]
is an AI technique for games of imperfect information. It is
based on two dimensions of Monte Carlo sampling: sampling
of states from the current information set, and sampling of
action sequences in the game tree. ISMCTS has shown itself
effective across a range of board and card games [1], [2],
[3], [4], however it lacks the ability to perform inference
or to bluff. This paper investigates how these capabilities
can be added to ISMCTS. ISMCTS works by sampling
determinizations (states from the current information set)
and playing them out through the MCTS tree. We show
how inference can be achieved by recording the frequency
with which each determinization visits each part of the
tree, i.e. by tracking information which in standard ISMCTS
would be discarded. We achieve bluffing by introducing
self-determinization: allowing states to be sampled that are
impossible from the search agent’s point of view, but possible
from the opponent’s point of view. This is sufficient for bluff-
ing to emerge given enough computational time; however we
also introduce a mechanism to encourage bluffing behaviour
within a smaller budget.

The structure of this paper is as follows. Section II
presents relevant background material on ISMCTS and ex-
isting approaches to inference and bluffing. Section III in-
troduces the game used for experiments. Section IV details
the variant of ISMCTS used in this paper, which uses a
slightly different tree structure than in previous work on
ISMCTS. In Section V we show how existing information
in the ISMCTS trees can be reused for inference, and
Section VI introduces several techniques that can induce
bluffing behaviour. Section VII presents experimental results.
Finally Section VIII summarises the results and discusses
directions for future work.

II. BACKGROUND

A. Information Set MCTS

Perfect Information Monte Carlo (PIMC) [5] is an AI
technique for games of imperfect information. PIMC works
by sampling determinizations (states from the current in-
formation set), treating each as an instance of a perfect
information game, and aggregating the results to make a

114



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

decision in the original game. PIMC was introduced by
Ginsberg [6], and has been combined with MCTS by several
authors [7], [8], [9], [10], [11].

Frank and Basin [12] identify two shortcomings of PIMC.
The first is strategy fusion. A determinization is treated
as a perfect information game, so all information is fully
observable. This means the AI can choose actions contingent
on information that is not available. For example a PIMC
player for Poker can decide whether to bet or fold based on
the cards in its opponents’ hands. The second problem is non-
locality. PIMC samples states from the current information
set with uniform probability. However some states may be
more likely than others, given that opponents are rational. For
example in Poker, a player betting a large amount suggests
the player’s hand is more likely strong than weak (assuming
they are not bluffing), but a PIMC player fails to account for
this.

Information Set Monte Carlo Tree Search (ISMCTS) [1]
is a variant of MCTS for games of imperfect information (for
an overview of MCTS refer to [13]). ISMCTS is based on
the PIMC technique, but does not treat the determinizations
separately. Instead, each MCTS iteration begins by sampling
a determinization, which is used to guide the current playout
and then discarded. Thus instead of analysing each deter-
minization separately and aggregating the results afterwards,
ISMCTS aggregates results in the same tree throughout the
search. ISMCTS solves the problem of strategy fusion when
taking a PIMC approach to MCTS.

B. Inference

In a game of imperfect information, a player knows
the current information set but not the current state. A
belief distribution assigns a probability to each state in the
information set, specifying how likely that state is to be the
true state of the game. Inference is the process of updating
this belief distribution in response to opponent actions,
with respect to an opponent model which predicts how the
opponent would act upon different observations of hidden
information. There are deductions which human players often
refer to as “inference” but which do not depend on opponent
policy, for example those arising from card counting or other
probabilistic reasoning. In this paper we limit inference to
deductions which stem from opponent actions with respect
to an opponent model, because probabilistic deductions are
already within the capabilities of ISMCTS [14].

The most common theoretical framework for inference
in games is Bayesian inference. Consider a state s in the
current information set I . There is a prior belief P (s), the
probability that s is the actual state of the game. Upon
observing an opponent action a, the posterior belief P (s|a)
is the probability that s was the actual state of the game
given that a was played from that state. If it is assumed that
the opponent’s (mixed) policy is known, then P (a|s) is the
probability that the opponent plays action a from state s; this
assumed policy is the opponent model. Given the prior belief
and the opponent model, Bayes’ theorem can be applied to
obtain the posterior belief:

P (s|a) =
P (a|s)P (s)∑

u∈I P (a|u)P (u)
. (1)

There exist several approaches to integrating inference
(Bayesian or otherwise) with MCTS for particular games.
Most existing approaches for applying inference with MCTS
use an opponent model which is computed offline, but
used to determine a distribution over states at runtime. For
example Ponsen et al [15] learn an opponent model for
Poker which is used to influence the cards dealt and select
actions for the opponent. Buro et al [16] apply a similar
method to the card game Skat, where a learned opponent
model is used to estimate the likely cards held by each
player. Whitehouse et al [2] use a knowledge base of hand-
coded rules with automatically tuned weights to influence the
distribution of cards dealt to players depending on factors
such as their bid.

There has been less work on methods which compute an
opponent model online, though there is a natural synergy
between this approach and MCTS since MCTS already
models the decisions of opponents. If it is assumed that
MCTS is a good opponent model, an inference model can
be built by using tree statistics. For example if every state in
an information set is sampled sufficient times, it is possible
to measure the proportion of times each action was selected
for an opponent from each state and update the belief state
using Bayes’ theorem. This approach has been successful in
applications such as Scrabble [17]. Silver and Veness [14]
propose an approximate method using a particle filter, which
approaches a correct belief state as more particles are used.
One drawback of this method is that particle deprivation may
occur as the particles disperse in a large state space and a
particle reinvigoration method is needed.

III. THE RESISTANCE

The Resistance is a social deduction game designed by
Don Eskridge and first published in 2009 [18]. This section
describes the rules for the 5-player game; variants for up
to 10 players also exist. Each player is assigned a role
at random, such that there are two spies and three non-
spies. Each player knows her own role; additionally, each
spy knows the identity of the other spy. The game is played
over five rounds, each of which can be won by the spy team
or the non-spy team. The aim of the game is to win three out
of five rounds for your team. Each round has the following
structure:

Team choice. One player is designated the leader; this passes
around the players in turn. The leader chooses two (in rounds
1 and 3) or three (in rounds 2, 4 and 5) players, possibly
including himself, to form a mission team.

Voting. All five players vote simultaneously to approve or
reject the team. If a majority approve the team, the mission
proceeds. Otherwise, the next player becomes leader and
chooses a team. If five team choices are rejected in a single
round, the spies automatically win the game.

Mission. Each player on the mission team chooses a card in
secret: success or failure. A non-spy player must choose the
success card; a spy player has a free choice. The cards are
shuffled and revealed, so that only the number of successes
and failures are known, and not which team member played
which card. If all cards are successes, the non-spies win the
mission; if any card is a failure, the spies win the mission.

115



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

If the non-spies knew the identities of the spies, they
could force a win: only choose mission teams with no spies,
and use their majority status to vote down any deviation from
this. Thus a non-spy player must determine who her fellow
non-spies are, and signal her own non-spy status; conversely,
a spy player must obfuscate his identity to win the trust of
the non-spies. It is always disadvantageous for a non-spy to
appear spy-like, so non-spies do not need to bluff. Spies have
perfect information, so do not need to perform inference.
Thus we can study inference and bluffing in isolation to
each other. This is in contrast to most games of hidden
information, where success generally requires a mixture of
inference and bluffing.

The number of states per information set is small, es-
pecially compared to the combinatorially large information
sets commonly seen in other games. The only piece of hidden
information is the identity of the spies, for which there are(
5
2

)
= 10 possibilities. A player knows her own role and spies

know all roles, so the size of an information set is
(
4
2

)
= 6

for a non-spy player or 1 for a spy player. Furthermore the
roles do not change during the game.

IV. MANY TREE ISMCTS

The original motivation for ISMCTS was to search
trees of information sets. The multi-observer variant of
ISMCTS [1] comes close to this goal, but nodes in opponent
trees represent unions of information sets rather than single
information sets. In particular, opponent decisions cannot
depend on information that is known to the opponent at the
root but unknown to the searching player.

To address this, we introduce Many Tree ISMCTS
(MT-ISMCTS). MT-ISMCTS constructs several trees per
player, one for each information set that the player can
possibly observe at the current time. Each iteration sam-
ples a determinization, and selects the corresponding tree
for each player. For example in The Resistance, if I am
player 1 and I am not a spy then there are four possible
information sets that player 2 may observe: (i) player 2
is not a spy; (ii) players 2 and 3 are spies; (iii) players 2
and 4 are spies; (iv) players 2 and 5 are spies. MT-ISMCTS
constructs a separate tree for each of these possibilities, and
a determinization dictates which combination of trees is used
for each iteration. Pseudocode for MT-ISMCTS is given in
Algorithm 1. Assuming that the game satisfies properties set
out in [1] (which ensure that the revelation of information
during the game always occurs by observation of actions by
players or by a virtual “environment” player, not by direct
observation of the current information set), each node in MT-
ISMCTS corresponds to a single information set. If the game
does not contain transpositions, the correspondence between
nodes and information sets is one-one.

In Algorithm 1, the mapping U stores root nodes only.
It would be possible to store all nodes in this mapping and
do away with the tree structure entirely: at lines 16 and 22,
instead of looking up the child of ui for action a, look up

the node in U corresponding to information set [d]
i
. Then

U would also function as a transposition table, ensuring one
node per information set. However this requires multiple hash

Algorithm 1 The MT-ISMCTS algorithm.

for player i, state s, action a and node ui

[s]
i

is i’s information set containing s
ρ(s) is the player about to act in s
〈a〉i is i’s observation of a
s.a is the state resulting from applying a in s
ui. 〈a〉i is the child of ui through edge 〈a〉i

1: // Search from information set I , and return an action
2: function MT-ISMCTS(I)
3: U := empty mapping from information sets to nodes
4: while time remains do
5: sample a determinization d of I
6: for each player i do
7: if U contains key [d]

i then
8: ui := U

(
[d]

i
)

9: else
10: U

(
[d]

i
)

:= ui := new node

11: // Selection
12: while uρ(d) fully expanded and d nonterminal do
13: a := BANDITALGORITHM(uρ(d))
14: d := d.a
15: for each player i do
16: ui := ui. 〈a〉i

17: // Expansion
18: if uρ(d) is not fully expanded then
19: a := random unexpanded action from uρ(d)

20: d := d.a
21: for each player i do
22: if ui. 〈a〉i does not exist then
23: ui. 〈a〉i := new node

24: // Simulation
25: apply random actions until d is a terminal state

26: // Backpropagation
27: for each player i do
28: for each node vi visited this iteration do
29: update vi’s win and visit statistics

30: return most visited action from U (I)

table lookups per MCTS iteration, which is likely to be more
computationally expensive than maintaining a tree structure.

The drawback of using additional trees is that the
ISMCTS learns more slowly, since not every tree is updated
on each iteration. The advantage is that the additional trees
improve the opponent model of ISMCTS, which is particu-
larly important if the opponent model is to be exploited for
inference. Therefore the additional trees can be seen as a
trade-off between a fast learning rate and a better opponent
model. It is likely that the learning rate can be increased by
using enhancements that share knowledge between trees [3].
As presented here, MT-ISMCTS is only applicable to games
in which the number of states per information set is small.

116



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

This rules out many games of imperfect information, where
information sets are combinatorially large. Some mechanism
for “bucketing” information from similar determinizations
would be required to apply MT-ISMCTS to such games; this
is a subject for future work.

The pseudocode in Algorithm 1 does not specify the
bandit algorithm to be used (line 13). The UCB1 algo-
rithm [19] is by far the most commonly used bandit algorithm
in the MCTS literature [20], [13]. However in this paper we
use UCB-Tuned [19], which has been shown to outperform
UCB1 in several domains [21], [22] and has no parameters
to tune. Preliminary experiments showed a marginal benefit
(around a 3–4% increase in win rate) from using UCB-Tuned
instead of UCB1 in The Resistance.

V. PARTICLE FILTER INFERENCE

The idea of particle filtering in an ISMCTS-like al-
gorithm was suggested for single-agent POMDPs by Sil-
ver and Veness [14]. The idea is to record the frequency
with which each determinization (particle) reaches each node
in the tree, and use this to update the belief distribution in
response to observed moves.

Consider a tree with root node u and a child v corre-
sponding to action a. Consider also a determinization d for
the root information set where d is chosen with probability
P (d), the prior belief that the current state is d. Then the
number of visits to child v with determinization d as a
fraction of the total number of visits to v is an estimate of
P (d|a): the probability that d was the current determinization
given that action a was selected from the root. Hence this
method allows the posterior belief to be sampled empirically
without need for Bayes’ rule (Equation 1).

In many games, there are too many states per information
set to enumerate. Silver and Veness [14] sample a small
number of determinizations to use as particles, and introduce
a reinvigoration mechanism to counteract the depletion of
the particle set as the tree is descended. In The Resistance
the number of states per information set is small, so no such
mechanism is needed: our pool of “particles” is in fact a com-
plete enumeration with associated probabilities. We introduce
a particle filter inference mechanism for MT-ISMCTS. We
define a mapping c from (node, determinization) pairs to
integers: c(ui, d) is the number of iterations that visited ui

and used determinization d. These counts begin at zero and
are incremented during backpropagation.

The player also maintains a belief distribution φ over
determinizations, separate from the tree, which is used to
sample determinizations (Algorithm 1 line 5). At the be-
ginning of the game, this distribution is chosen to match
the distribution of initial game states (which often means
a uniform distribution). The belief distribution is updated
every time the player observes an action, according to the
tree constructed the last time the player executed the MT-
ISMCTS algorithm. Suppose that u is the node in player i’s
MT-ISMCTS tree which corresponds to the current situation.
An opponent performs an action a, which player i observes

as 〈a〉i. Let v = u. 〈a〉i be the corresponding child of u,
using the same notation as Algorithm 1. Let n(v) be the
visit count for v, and let N be the number of MT-ISMCTS

iterations that player i executed for the last decision. For
each determinization d, we update the belief distribution φ
by

φ(d) :=

(
1 − n(v)

N

)
φ(d) +

n(v)

N

c(v, d)

n(v)
. (2)

The update is weighted by a factor
n(v)
N : the number of

visits to the new node v divided by the total number of
iterations. If relatively few iterations visited v then the first
term dominates, and φ(d) remains close to its current value.
If v was visited many times, φ(d) moves towards the second
term: the number of visits to v which used determinization
d, as a proportion of the total number of visits to v. As noted
above, this is an approximation of P (d|a).

The idea of weighting the update by
n(v)
N is that infre-

quently visited branches should not bias the distribution too
much, as otherwise the inference may become brittle. Also

since
n(v)
N < 1, the frequency distribution never completely

replaces the belief distribution, so a determinization probabil-
ity that starts as nonzero will stay nonzero. In some games,
an observed action can signal that certain determinizations
are impossible. An example of this in The Resistance is
mentioned in Section III: if a mission contains a failure card,
then there must be a spy on the team. Our inference system
detects this, and sets φ(d) = 0 for those determinizations.

VI. SELF-DETERMINIZATION AND BLUFFING

ISMCTS traditionally only considers determinizations in
the searching player’s current information set, i.e. only states
that are compatible with the searching player’s observations.
This makes bluffing and information hiding impossible: the
agent assumes that whatever it can see, its opponents can also
see. To solve this we need self-determinization: we need to
sample determinizations that we know to be false, but which
opponents may be considering. This models the uncertainty
an opponent has about the player’s information and allows
the player to exploit that uncertainty.

When using MT-ISMCTS, we can safely introduce self-
determinization without polluting the decision tree with
false information: iterations using determinizations outside
the player’s information set do not descend or update the
decision tree, but the fact that they descend and update
the opponents’ trees means that they do factor into the
opponent model. However a significant amount of time is
potentially “wasted” considering lines of play that are known
to be impossible, for the sake of more accurate opponent
modelling. Thus a balance must be struck between searching
“true” determinizations (in the root information set) and self-
determinizations (not in the root information set). This gives
rise to a new problem: any bias towards true determinizations
will also influence the opponent trees, causing the hidden
information to “leak” into the modelled opponent policy and
thus lessening the effectiveness of self-determinization.

A self-determinizing player needs two belief distribu-
tions: the usual belief distribution φ used to select true
determinizations, and a distribution ψ used to select self-
determinizations. The latter is the player’s model of what
the opponent’s have inferred so far. Both are updated as
described in Section V, but ψ is initialised and updated

117



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

without knowledge of the player’s hidden information. In The
Resistance, φ is initialised by setting the probabilities of spy
configurations containing the player to 0 (if the player is not
a spy) or the probability of the actual spy configuration to 1
(if the player is a spy), whereas ψ is initialised by setting all
spy configurations to equal probability, regardless of whether
they contain the player and whether the player is a spy.

The distribution φ is updated according to the player’s
decision tree. If ψ were updated using the decision tree,
information about the player’s hidden information would
leak into ψ and the benefit of self-determinization would
be defeated. Instead ψ is updated by merging all the trees
from the player’s perspective, including the decision tree and
all trees for self-determinizations. The visit counts in the
merged tree are obtained by summing the visit counts across
all trees. This can be thought of as a tree “averaged” across
all self-determinizations, or the tree that would be built by
an external observer who could not see any of the players’
hidden information.

Bluffing is in general a strategic decision, i.e. the benefits
of bluffing at one point in the game are often not realised
until a much later point, and occur indirectly as a result of in-
fluencing the opponent policy. In The Resistance it is obvious
to a human player that a spy should conceal her identity (even
without the context of the game’s theme), but to discover this
purely by tree search is difficult. This suggests that game-
specific knowledge is required to encourage bluffing. Such
knowledge has been used in MCTS players for the hide-
and-seek game Scotland Yard [23], where the hiding player
benefits from favouring moves which increase the seekers’
uncertainty about his location.

We test a number of approaches to self-determinization:

TRUEONLY. Do not perform self-determinization; only sam-
ple determinizations from φ. This method is included as a
benchmark.

PURE. Simply run ISMCTS with determinizations sampled
from ψ, i.e. all self-determinizations. Some of these deter-
minizations will happen to be true determinizations and thus
update the decision tree, but otherwise no special effort is
made to search the decision tree.

SPLIT. Split the time budget (expressed as a number of
iterations) in half. Sample determinizations from ψ for the
first half, and from φ for the second half. The first phase
seeds the trees with statistics from self-determinizations, and
the second searches only true determinizations but benefits
from pre-seeded opponent trees.

TWOSTEP. Similar to SPLIT, proceed in two phases and
sample from ψ in the first phase. At the end of the first
phase, the opponent trees are fixed and used to define a
mixed policy where the probability of selecting a child node
is proportional to its number of visits. The second phase
samples determinizations from φ, but instead of performing
bandit selection at opponent decision nodes, the mixed policy
from the first phase is used and backpropagation does not
update opponent trees. This preserves the integrity of the
opponent model, preventing true information from polluting
it. The mixed opponent policy is required as continuing to

use UCB-Tuned without updating the opponent trees would
lead to deterministic decisions at opponent nodes.

BLUFF. As SPLIT, but with a different mechanism for
choosing the action to play at the end of the search. Denote
the mean reward for an action a from the root of the decision
tree by μa and the standard deviation by σa. Choose a∗ with
maximal number of visits from the root of the decision tree,
as usual. Let

A∗ = {a : μa∗ − μa < min(σa∗ , σa)} , (3)

i.e. A∗ is the set of actions whose average reward is within
one standard deviation of the reward for the best action. Now
for each action in A∗, sum the number of visits from the
root across all the current player’s trees (i.e. the decision
tree and all trees corresponding to self-determinizations), and
play the action for which this sum is maximal. In other
words, the chosen action is the most visited across all self-
determinizations that is not significantly worse than the most
visited action in true determinizations; the bluff that is not
significantly worse than the best non-bluff.

PURE is the most theoretically sound method (and
similar to Smooth UCT, which can converge to a Nash-
equilibrium [24]) but “wastes” most of its iterations by
not updating the actual decision tree. SPLIT provides a
compromise by spending at least half its time searching true
determinizations, but risks leaking information into the oppo-
nent model. TWOSTEP prevents this leakage of information
by not updating the opponent model at the end of the first
step, at the cost of the opponent model being weakened due
to having fewer iterations. Any bluffing behaviour observed
in these three methods is an emergent property of the search.
BLUFF explicitly integrates bluffing behaviour into the move
selection, by choosing a move which is plausible when the
opponent model “cheats” (searching true determinizations)
but was preferred over other moves when the opponent model
does not “cheat”. In other words, amongst the moves which
are the most robust against opponent’s inference, choose the
move which best exploits their lack of knowledge.

VII. EXPERIMENTS

A. Inference and self-determinization methods

In this section we test various MT-ISMCTS players for
The Resistance, namely non-spy players using the inference
methods described in Section V and spy players using the
self-determinization methods described in Section VI. Two
non-spy players are tested: one sampling determinizations
uniformly at random, and one using the particle filter in-
ference mechanism described in Section V. Both of these
players use 20 000 iterations per decision, and neither player
uses self-determinizations. For the spies, we test players us-
ing each of the variants of self-determinization in Section VI.
The TRUEONLY player uses 20 000 iterations per decision,
whereas the others use 40 000 iterations. SPLIT, TWOSTEP

and BLUFF perform 20 000 iterations per phase. For each
tested configuration 1000 games were played, each with 5
players: each of the 10 possible spy configurations was tested
100 times, each time with all the spy players using one
algorithm and all the non-spy players using another.

118



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

Fig. 1. Comparison of inference and self-determinization methods for
The Resistance. Each bar shows the win rate for algorithm playing as the
Spy team against non-spies using ISMCTS with or without particle filter
inference.

Results shown in Figure 1 indicate that inference is
extremely powerful against the TRUEONLY player, reducing
the latter player’s win rate by 66.4%. The PURE, SPLIT

and TWOSTEP methods are around twice as strong as the
non-self-determinizing player, with no significant difference
between the three. The most effective counter to the inference
player is the BLUFF player, with an improvement of 31.7%
over the non-self-determinizing player. This shows that this
bluffing method counteracts roughly half of the advantage
gained by the non-spy players performing inference, and
results in a more evenly matched game.

B. Balancing true and self-determinizations

In the previous section, the SPLIT, TWOSTEP and BLUFF

players all used an equal division of their iteration bud-
gets between self-determinizations and true determinizations.
This section investigates the effect of this split on the player’s
performance. Once again the particle filter inference non-spy
player using 20 000 iterations played against the SPLIT spy
player using 40 000, but here the number of iterations T1 used
in the first (self-determinizing) search is varied between 0 and
40 000, with T2 = 40 000−T1 iterations for the second (true
determinization) phase. Note that T1 = 40 000 is equivalent
to pure self-determinization, and T1 = 0 is equivalent to a
player which uses only true determinizations.

Results are shown in Figure 2 and indicate an up-
ward trend as the number of self-determinizing iterations
increases, with performance reaching a plateau between
15 000 and 35 000 self-determinizing iterations and drop-
ping off for 40 000 iterations. There is a trade-off to be
made between searching the decision tree and searching
other self-determinizations; these results suggest that devot-
ing anywhere between 3

8 and 7
8 of the total search bud-

get to self-determinizations yields reasonable performance.
The experiment underlines that sensitivity of performance
to this fraction is low in The Resistance, that 5000 true
determinizaions is a sufficient amount and that any additional
determinizations sampled should be self determinizations.

Fig. 2. Performance of the SPLIT spy player for The Resistance, devoting
various numbers of iterations to self-determinizations.

Fig. 3. Performance of ISMCTS variants for The Resistance for varying
numbers of iterations. Non-spy players use ISMCTS with particle filter
inference, whilst spies use ISMCTS with the specified self-determinization
method (win rates are given for the Spy team). Both spies and non-spies
use the specified number of iterations per decision.

C. Emergence of bluffing

Figure 3 shows the performance of the TRUEONLY,
PURE, SPLIT and BLUFF spy players with varying numbers
of ISMCTS iterations. In each case the non-spy players use
inference but no self-determinization. All players (spies and
non-spies) use the specified number of iterations, with the
SPLIT and BLUFF spy players using half the iterations for
self-determinizations and half for true determinizations. The
four spy player types use the same number of iterations
in total, unlike the experiments in Section VII-A where
the self-determinizing players have twice the budget of the
pure player. Note that the number of iterations varies for
all players, so the spies’ win rate can fluctuate up or down
depending on which team is improving more quickly as the
number of iterations increases.

For small numbers of iterations the performance of the
different spy players is close, but the TRUEONLY and SPLIT

players are stronger than the bluffing player by a statistically

119



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

Fig. 4. Plots of the inferred probability for the correct spy configuration
across 250 games of The Resistance. Non-spies use particle filter inference,
whilst spies use no self-determinization (i.e. TRUE). Time moves left to
right along the x-axis, from the beginning to the end of the game, scaled to
align mission numbers. The left-hand plot shows games where the non-spy
team won; the right-hand plot shows games won by the spies.

Fig. 5. As Figure 4, but without particle filter inference, i.e. only keeping
track of hard constraints. To show the density of overlapping lines, a small
random vertical offset has been added to each line.

significant margin (at 95% confidence). Between 5 000 and
200 000 iterations, the BLUFF player is much stronger than
the other two. However for very large numbers of iterations
SPLIT overtakes BLUFF whilst performance of TRUEONLY

remains poor. This suggests that SPLIT with sufficiently
many iterations can produce bluffing behaviour without an
explicit bluffing mechanism. However it should be noted that
the computational resources required for this player might
be infeasible for a commercial application: a single-threaded
C++ implementation of a player using 1 000 000 iterations
takes around 10 seconds per decision on a desktop PC with
a 2.53GHz Intel Xeon processor and requires around 1GB of
memory to store the MT-ISMCTS trees for a single decision.

An upward trend is visible in the win rate for the
TRUEONLY player for more than 50 000 iterations, albeit a
slower one than for the split player. One possible explanation
for this is that the non-determinizing spy player may pes-
simistically assumes that the game is lost, as it is assuming
that the non-spies know that it is a spy. MCTS tends to play
randomly when its decisions do not affect the result of the
game. However, playing randomly reduces the ability of the
non-spies to perform inference, hence possibly leading to
a situation where the spies can win. Similarly pessimistic
behaviour can be seen when applying ISMCTS to a phantom
connection game [1].

D. Effect of inference on the belief distribution

Figure 4 shows how a non-spy player’s belief distribution
evolves over time when using particle filter inference. The
plots show the belief probability assigned by φ to the actual
configuration of spies in the game, which starts as 1

6 ≈ 0.167

Fig. 6. As Figure 4, but with spy players using BLUFF.

and changes as the player performs inference. For compar-
ison, Figure 5 shows how the belief distribution evolves if
the player performs no inference and only keeps track of
hard constraints, plotting the reciprocal of the number of
spy configurations compatible with the members of failed
mission teams. The inference player displays an overall
upward trend much steeper than that for the player without
inference and very rarely is the probability lower than 1

6
(which would imply that an incorrect inference was made).

Figure 4 suggests some correlation between the success
of inference and the outcome: in many of the games won
by the spies, the non-spy players assign a relatively low
probability to the actual spy configuration. In this experiment
the spies are using the TRUE method, so are not trying to
mislead the inference engine. Figure 6 shows the results
when the spy players use BLUFF. Bluffing results in the
probability of the actual spy configuration being typically
lower and results in the spies winning more games. In
particular, when the spies bluff there are no instances where
the actual configuration had probability 1 after the first
mission There are also many games won by the spies on the
last mission whereas there are none when the spies do not
bluff, suggesting that the bluffing players are more willing
to sacrifice the first few rounds in order to win the game.

VIII. CONCLUSION

By including tree nodes for opponent decisions, tree
search implicitly constructs an opponent model while it
searches. We have shown that this opponent model can be
re-used for inference. We have also shown that bluffing
behaviours can be introduced simply by allowing the search
to sample determinizations outside the current information
set, but that certain modifications to ISMCTS can obtain
this bluffing behaviour for less computational effort. The
methods presented here were demonstrated to enable MCTS
to perform bluffing and inference in The Resistance. Two
games were played with a mix of 5 human players and 2
MCTS players, and both times there was an MCTS player on
the winning side (non-spy in one game and spy in another),
but the MCTS agents had mixed success at inferring the
identity of the spies. More games would need to played
(facilitated by development of a suitable interface) to draw
any reasonable conclusions about the performance of MCTS
compared with humans at The Resistance.

The new techniques presented do not use any game-
specific heuristics, so it is natural to ask whether they can
be applied to other games. However part of our success in
The Resistance is due to the small number of states per

120



Tainan, Taiwan  August 31, 2015 – September 2, 2015 

information set, and attempting to scale the techniques to
larger and more complex games does not yield the same
level of performance. In order to tackle larger games within
a reasonable computational budget, it would be necessary to
exploit domain knowledge to reduce the number of states per
information set (for the purposes of inference and bluffing).
One way in which such knowledge could be injected is by
performing inference not over the state space but over a
much smaller feature space designed to capture the important
pieces of hidden information whilst abstracting the rest away,
in a manner similar to [16]. Domain knowledge could also
be used improve the learning rate of MT-ISMCTS (using
appropriate knowledge injection enhancements [13]), requir-
ing fewer iterations for bluffing and inference to emerge
from search. Combining both of these approaches is likely
necessary for the methods developed in this work to scale to
larger and more complex games.

From a game theoretic point of view, there is nothing
special about inference and bluffing: they are merely labels
for behaviours which must necessarily be included in a
Nash equilibrium policy. As such, any AI technique proven
to converge on a Nash equilibrium, such as counterfactual
regret minimisation [25], is implicitly capable of inference
and bluffing if required for optimal play. If application
domain and computational resources permit, such techniques
would normally be a more robust choice than MT-ISMCTS.
However the strength of MCTS is that it can make good
(but not necessarily Nash) decisions in an online fashion
with a limited computational budget, and it scales well to
combinatorially large game trees. This is in contrast to most
techniques for approximating Nash equilibria, which require
policies to be calculated offline (usually at great computa-
tional expense) and stored for later use. Some techniques are
better suited to online settings, such as online MCCFR [26]
and Smooth UCT [24]; comparing MT-ISMCTS to these is
a subject for future work.

ACKNOWLEDGEMENTS

This work was funded by grant EP/H049061/1 of the
UK Engineering and Physical Sciences Research Council
(EPSRC).

REFERENCES

[1] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set
Monte Carlo Tree Search,” IEEE Trans. Comp. Intell. AI Games,
vol. 4, no. 2, pp. 120–143, 2012.

[2] D. Whitehouse, P. I. Cowling, E. J. Powley, and J. Rollason, “Inte-
grating Monte Carlo Tree Search with Knowledge-Based Methods to
Create Engaging Play in a Commercial Mobile Game,” in Proc. Artif.
Intell. Interact. Digital Entert. Conf., Boston, Massachusetts, 2013,
pp. 100–106.

[3] E. J. Powley, P. I. Cowling, and D. Whitehouse, “Information capture
and reuse strategies in Monte Carlo Tree Search, with applications
to games of hidden information,” Artif. Intell., vol. 217, pp. 92–116,
2014.

[4] N. Sephton, P. I. Cowling, E. J. Powley, and D. Whitehouse, “Par-
allelization of Information Set Monte Carlo tree search,” in IEEE
Congress on Evolutionary Computation, 2014.

[5] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game
Tree Search,” in Proc. Assoc. Adv. Artif. Intell., Atlanta, Georgia,
2010, pp. 134–140.

[6] M. L. Ginsberg, “GIB: Imperfect Information in a Computationally
Challenging Game,” J. Artif. Intell. Res., vol. 14, pp. 303–358, 2001.

[7] J. Borsboom, J.-T. Saito, G. M. J.-B. Chaslot, and J. W. H. M.
Uiterwijk, “A Comparison of Monte-Carlo Methods for Phantom Go,”
in Proc. BeNeLux Conf. Artif. Intell., Utrecht, Netherlands, 2007, pp.
57–64.

[8] J. Schäfer, “The UCT Algorithm Applied to Games with Imperfect
Information,” Diploma thesis, Otto-Von-Guericke Univ. Magdeburg,
Germany, 2008.

[9] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” in Proc. 19th Int. Conf. Au-
tomat. Plan. Sched., Thessaloniki, Greece, 2009, pp. 26–33.

[10] P. Ciancarini and G. P. Favini, “Monte Carlo tree search in
Kriegspiel,” Artif. Intell., vol. 174, no. 11, pp. 670–684, 2010.

[11] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in
Monte-Carlo Tree Search for the card game Dou Di Zhu,” in Proc.
Artif. Intell. Simul. Behav., York, United Kingdom, 2011, pp. 17–24.

[12] I. Frank and D. Basin, “Search in games with incomplete information:
a case study using Bridge card play,” Artif. Intell., vol. 100, no. 1-2,
pp. 87–123, 1998.

[13] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comp.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[14] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,”
in Proc. Neur. Inform. Process. Sys., Vancouver, Canada, 2010, pp.
1–9.

[15] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating
Opponent Models with Monte-Carlo Tree Search in Poker,” in Proc.
Conf. Assoc. Adv. Artif. Intell.: Inter. Decis. Theory Game Theory
Workshop, Atlanta, Georgia, 2010, pp. 37–42.

[16] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving
State Evaluation, Inference, and Search in Trick-Based Card Games,”
in Proc. 21st Int. Joint Conf. Artif. Intell., Pasadena, California, 2009,
pp. 1407–1413.

[17] M. Richards and E. Amir, “Opponent Modeling in Scrabble,” in Proc.
20th Int. Joint Conf. Artif. Intell., Hyderabad, India, 2007, pp. 1482–
1487.

[18] BoardGameGeek, “The Resistance,” http://boardgamegeek.com/
boardgame/41114/the-resistance.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of
the Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2, pp.
235–256, 2002.

[20] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Plan-
ning,” in Euro. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Germany: Springer, 2006, pp. 282–
293.

[21] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with Patterns in Monte-Carlo Go,” Inst. Nat. Rech. Inform. Auto.
(INRIA), Paris, Tech. Rep., 2006.

[22] P. Perick, D. L. St-Pierre, F. Maes, and D. Ernst, “Comparison of
Different Selection Strategies in Monte-Carlo Tree Search for the
Game of Tron,” in Proc. IEEE Conf. Comput. Intell. Games, Granada,
Spain, 2012, pp. 242–249.

[23] J. A. M. Nijssen and M. H. M. Winands, “Monte Carlo Tree Search
for the Hide-and-Seek Game Scotland Yard,” IEEE Trans. Comp.
Intell. AI Games, vol. 4, no. 4, pp. 282–294, 2012.

[24] J. Heinrich and D. Silver, “Self-Play Monte-Carlo Tree Search in
Computer Poker,” in Workshops at the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, Québec, Canada, 2014, pp. 19–25.

[25] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
Minimization in Games with Incomplete Information,” in Proc. Adv.
Neur. Inform. Process. Sys., Vancouver, Canada, 2008, pp. 1729–
1736.

[26] M. Lanctot, V. Lisý, and M. Bowling, “Search in Imperfect In-
formation Games using Online Monte Carlo Counterfactual Regret
Minimization,” in Proceedings of the AAAI Workshop on Computer
Poker and Imperfect Information, 2014.

121



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


