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Abstract—This paper describes our entry to the Multiobjec-
tive Physical Travelling Salesman Problem (MO-PTSP) competi-
tion at the IEEE CIG 2013 conference. MO-PTSP combines the
classical Travelling Salesman Problem with the task of steering
a simulated spaceship on the 2-D plane, requiring that the
controller minimises the three objectives of time taken, fuel
consumed and damage incurred.

Our entry to the MO-PTSP competition builds upon our
winning entry to the previous (single-objective) PTSP com-
petitions. This controller consists of two key components: a
pre-planning stage using a classical TSP solver with a path
cost measure that takes the physics of the problem into
account, and a steering controller using Monte Carlo Tree
Search (MCTS) with macro-actions (repeated actions), depth
limiting and a heuristic fitness function for nonterminal states.
We demonstrate that by modifying the two fitness functions we
can produce effective behaviour in MO-PTSP without the need
for major modifications to the overall architecture.

The fitness functions used by our controller have several
parameters, which must be set to ensure the best performance.
Given the number of parameters and the difficulty of optimising
a controller to satisfy multiple objectives in a search space which
is many orders of magnitude larger than that encountered in
a turn-based game such as Go, we show that informed hand
tuning of parameters is insufficient for this task. We present an
automatic parameter tuning method using the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) algorithm, which
produced parameter settings that dominate our hand tuned
parameters. Additionally we show that the robustness of the
controller using hand tuned parameters can be improved by
detecting when the controller is trapped in a poor quality
local optimum and escaping by switching to an alternate fitness
function.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a game tree search
algorithm that has enjoyed recent success and attention in
many domains [1]. Most notable amongst these domains is
the ancient Chinese board game Go [2], in which heuris-
tically guided minimax search is weak but MCTS-based
players approach the level of top professional human players.
MCTS has several useful properties which make it suitable
for developing game AI. MCTS is aheuristic: in its most
basic form, it requires no game-specific knowledge other than
a forward simulation model. MCTS is anytime: it can be
halted after any amount of computational time has elapsed

and will give a reasonable result, although more time leads
to better decisions. MCTS exhibits asymmetric tree growth:
instead of searching the tree to a fixed depth, it focuses
its attention on the most promising regions of the tree
(but potentially explores the entire tree, given enough time).
MCTS works by executing a large number of playouts from
the current state to some point in the future (e.g. the end
of the game, or after a fixed number of moves). Initially
the playouts are random, but each playout results in a node
being added to a partial search tree and a reward signal being
backpropagated through the tree. The tree informs the policy
used by subsequent playouts, so a strong policy is reinforced.

The Physical Travelling Salesman Problem (PTSP) [3]
extends the classical Travelling Salesman Problem (TSP) [4]
from a discrete optimisation problem to a discretised real-
time planning and control problem. In the TSP, moving from
one node to another is an atomic action incurring a known
fixed cost. In the PTSP, moving from one node to another
involves steering a simulated physical object on the 2D plane,
and so the cost depends not only on the distance between the
nodes but also on the path that is steered.

PTSP competitions were held at the WCCI 2012 and
CIG 2012 conferences [5], [6] and in both competitions our
controller, PUROFVIO, proved to be significantly stronger
than the other AI players and on a par with the strongest
human players [7]. Our controller uses MCTS for steer-
ing, using macro-actions (repeated actions) to reduce the
granularity of the action space and hence the depth of
the tree as well as to increase the time available for each
decision, and depth limiting with a heuristic fitness function
to reduce the length of playouts. The anytime nature of
MCTS was leveraged to ensure the AI chooses actions within
the allocated time of 40ms per decision.

In the PTSP, the aim is to minimise the time taken to
collect all waypoints on the map. In this paper we describe
our entry to the Multiobjective Physical Travelling Salesman
Problem (MO-PTSP) competition held at the CIG 2013
conference [6]. MO-PTSP introduces two further objectives
into the PTSP: applying thrust to the ship causes fuel to
be spent (although passing through waypoints or collecting
optional fuel tanks allows the ship to regain fuel) and
colliding with certain walls or driving through lava causes
damage to the ship. A successful entry to the competition



must seek to minimise all three of these incommensurable
objectives simultaneously.

This paper describes the modifications we made to
PUROFVIO for the MO-PTSP. The resulting controller is
named PUROFMOVIO. The architecture of our controller
is as described in [7], [3], consisting of a route planner
that selects the waypoint order using a TSP heuristic (with
a cost function that takes into account the physics of the
PTSP), and a steering controller that pilots the ship between
waypoints using MCTS (with macro-actions, depth limiting
and heuristic evaluation). The heuristic evaluations used by
PUROFMOVIO are more complex than those in PUROFVIO,
to take account of the new game elements and objectives.

Since we introduced a substantial number of parameters
to the controller, we elected to conduct automatic parameter
tuning for our controller. This was necessary for two reasons:
some of the new parameters may interact with each other
in ways that are difficult to predict, and the multi-objective
nature of the problem introduces compromises into the opti-
misation process (for example optimising for damage may in-
crease time spent and fuel used). We employ the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) algorithm
[8] for parameter tuning, but use non-dominated sorting of
individuals [9] to handle the multiple objectives. Automatic
parameter tuning successfully produced controllers which
perform better than our hand tuned controllers.

We also show how the reliability of our hand tuned
controller can be improved by introducing a mechanism to
detect when the player is “stuck” in a poor quality local
optimum and switching to an alternative panic mode fitness
function designed to escape these situations. Other authors
have investigated the idea of dynamically modifying the
fitness function to allow local search to escape poor quality
local optima, such as the variable fitness function approach
of Remde et al [10] and the guided local search approach
of Tsang and Voudouris [11]. In our approach the “local
search” algorithm is depth-limited MCTS, and the movement
of the ship around the map during the game itself plays the
role of local search’s exploration of the space. We detect
local optima based on the statistics collected in the MCTS
tree and respond by switching to a hand-designed set of
weights designed to move to a new, higher fitness region
by aggressively seeking the next node at any cost.

This paper is structured as follows. Section II describes
the Multiobjective Physical Travelling Salesman Problem.
Section III describes our MO-PTSP controller PUROF-
MOVIO, highlighting how it differs from our PUROFVIO
controller for PTSP. In particular, Section III-D describes
the panic mode enhancement for escaping poor quality local
optima. Section IV describes how we automatically tuned
the various algorithm and fitness function parameters, and
investigates the performance of our controller with both hand
tuned and automatically tuned parameters. Finally Section V
gives some concluding remarks and directions for future
work.

II. MULTIOBJECTIVE PTSP

This section gives a description of the MO-PTSP, outlin-
ing the differences between it and the PTSP.

A. PTSP

The Physical Travelling Salesman Problem (PTSP) is a
real-time game played on a 2-dimensional map. The map
has walls as obstacles, as well as a number of waypoints.
In the MO-PTSP competition as in the WCCI 2012 PTSP
competition, each map has 10 waypoints; maps in the
CIG 2012 PTSP competition had 30–50 waypoints. The map
itself is represented as a bitmap, where each pixel is either
a wall or empty space. The game proceeds in discrete time
steps, nominally one every 40ms (i.e. 25 per second). The
player controls a spaceship, similar to the one in the classic
video game Asteroids [12]: the ship can rotate at a constant
angular speed and can apply thrust in the direction that it is
currently pointing. The combinations of rotation (clockwise,
anticlockwise or none) and thrust (on or off) give a total of
3×2 = 6 actions, one of which must be chosen in each time
step. The ship is subject to simulated Newtonian physics:
thrust applies a force in the direction the ship is pointing,
but if the ship already has momentum then this may not be
the direction of travel. Collisions with walls do not damage
the ship, and in physical terms are inelastic: the ship bounces
away from the wall with reduced momentum.

The aim of the game is to pilot the ship through all
waypoints on the map in as few time steps as possible. As the
map is potentially not seen in advance, the AI controller is
given 1 second of preprocessing time before the game begins.
The controller must then specify an action every 40ms. The
player is disqualified if a certain number of time steps elapse
(800 in this competition) without the ship having collected a
waypoint; otherwise the game ends once all waypoints have
been collected.

B. MO-PTSP

The Multiobjective Physical Travelling Salesman Prob-
lem (MO-PTSP) modifies the PTSP in several ways. The
key difference is the addition of two counters, for fuel and
damage. Both counters start at 5000. The fuel counter is
decreased by 1 on every time step in which the controller
applies thrust, and increased by 50 (up to a maximum of
5000) when a waypoint is collected. The damage counter is
decreased by 10 when the ship collides with a wall. New
map elements, described below, also have effects on the two
counters. The aim of the game is to collect all waypoints
while minimising the three objectives of time steps taken,
fuel consumed and damage incurred. If the fuel counter
reaches zero, the ship is rendered unable to thrust. If the
damage counter reaches zero, the ship is destroyed and the
game ends. However in practice we have found that there is
virtually no danger of these conditions occurring in normal
play.

Maps for MO-PTSP contain several new elements in
addition to walls and waypoints:

• Red walls, collisions with which inflict 30 damage
points to the ship and have a lower coefficient of
restitution (i.e. remove more of the ship’s momentum)
than normal walls.

• Blue walls, collisions with which inflict no damage
and have a higher coefficient of restitution than normal
walls. Colliding with a suitably placed blue wall can



be an effective way of changing the direction of travel,
using less time and less fuel than rotating the ship and
thrusting.

• Areas of lava. The ship incurs 1 point of damage for
every time step it spends in lava. Most of the maps are
designed such that lava cannot be avoided completely
(e.g. with waypoints located in areas of lava), so the
controller must instead aim to spend as little time in
the lava as possible.

• Fuel tanks. Collecting a fuel tank increases the ship’s
fuel counter by 250, up to a maximum of 5000.

C. Competition scoring

The AI-versus-AI competition is played across 20 unseen
maps. For each map, a competitor receives 1 point if it is not
Pareto dominated by any other competitor; that is, if there is
no competitor that completed the map with equal or better
scores for all three of time, fuel and damage, and strictly
better for at least one of these objectives. On the Pareto front,
a competitor is awarded an additional 2, 9 or 14 points if it
outperforms all other competitors on one, two or three of the
objectives respectively. Thus seeking to optimise two of the
objectives at the expense of the third is a viable strategy, but
seeking to optimise only one is less likely to perform well.

The AI-versus-human competition is played across the
10 seen maps provided with the competition software frame-
work. The scoring system is the same as for the AI-versus-AI
competition. Human competitors play the game in real-time
via a Java applet on the competition website [6].

In the PTSP competitions, competitors were scored on
the basis of the number of waypoints they collected and the
time taken to do so. The MO-PTSP competition is stricter
with regards to number of waypoints collected: a competitor
failing to collect all waypoints on a map receives no points
for that map.

III. DESIGN OF THE CONTROLLER

The architecture of PUROFVIO for PTSP is described
fully in [7], [3], and the architecture of PUROFMOVIO for
MO-PTSP is broadly similar. The controller has three main
components:

1) The distance mapper, which precomputes the shortest-
path distance between every waypoint and every other
non-wall pixel on the map using a modified version of
the scanline flood fill algorithm [13].

2) The route planner, which uses the multiple fragment
heuristic [14] and 3-opt local search with first improve-
ment [15], [16] for the classical TSP to plan the order in
which to visit the waypoints. The edge weights in this
TSP instance are the shortest-path distances between
waypoints, queried from the distance maps. Our 3-opt
implementation uses a custom cost function, described
below, to account for the physics of the problem.

3) The steering controller, which is responsible for speci-
fying, every 40ms, an action for the ship to execute. It
uses the UCT variant of MCTS [17], with macro-actions
(actions repeated for a fixed number of consecutive time
steps [7], [3]) and depth limiting (cutting off the playout,

Fig. 1. An example of a distance map with a weighting of γ = 1, so that
paths through lava have twice the weight of paths through empty space.
The contour lines correspond to distances a multiple of 25 pixels from the
origin (shown as a dot). Note that in regions of lava (shaded light grey) the
contour lines are closer together.

which includes both tree descent and simulation, after
a fixed number of moves) to address the huge state
space in PTSP. Nonterminal states are evaluated using
a heuristic fitness function described below.

The remainder of this section describes the evaluations
used for MO-PTSP, and other differences from the PTSP
controller entered into the 2012 competitions.

A. Including lava in distance maps

The inclusion of lava in the map effectively changes the
edge weights for the route planner, as passing through lava
is more costly than passing through space (both have the
same time cost, but the former also has a damage cost). Lava
has a similar effect on the best path to steer between two
waypoints, as a short path through lava may be more costly
than a slightly longer path without lava. We address both
of these issues by factoring lava into the distance maps. For
PTSP the distance mapper assumes a weight of 1 between
horizontally or vertically adjacent pixels. For MO-PTSP we
use the same distance when neither pixel contains lava; if
one pixel contains lava then we use a weight of 1 + 1

2γ; if
both pixels contain lava then we use a weight of 1+γ. Here
γ is a constant to be tuned. For diagonally adjacent pixels,
the distance mapper uses the above weights multiplied by√
2. The effect of this modification on the distance maps is

shown in Figure 1.

B. Route cost function

An efficient route for PTSP must take account of the
physics of the problem. This is illustrated in Figure 2, where
a TSP solver taking only edge lengths into account chooses
a suboptimal route. We address this problem by using a
heuristic cost function during 3-opt local search, in place



Fig. 2. Illustration of route choice in PTSP: despite being shorter in terms
of edge lengths, the route on the left involves more sharp turns and therefore
takes longer for the steering controller to follow. [3, Figure 3].

of the more traditional sum of edge weights. The cost for a
route 〈w1, . . . , wn〉 is

c(〈w1, . . . , wn〉) =
n−1∑
i=1

d(wi, wi+1)
β1

+ β2

n−1∑
i=1

d(wi, wi+1)

e(wi, wi+1)

+ β3

n−2∑
i=1

θ(wi, wi+1, wi+2) (1)

where β1, β2 and β3 are constants to be tuned. Here
d(wi, wi+1) is the distance in pixels between waypoints wi
and wi+1, queried from the distance map for wi,

d(wi,wi+1)
e(wi,wi+1)

is a measure of the indirectness of the edge (how much
the shortest path deviates from a straight line between
the waypoints), and θ(wi, wi+1, wi+2) is a measure of the
change in angle between the edges on the route entering and
leaving wi+1. Full details of how indirectness and change in
angle are computed are given in [7].

Note the nonlinear mapping applied to the edge weight
d(wi, wi+1) in the first term: if β1 > 1, routes con-
taining very long edges are strongly penalised. (Typically
d(wi, wi+1) is between 100 and 1000, so β1 is tuned close
to 1 to avoid making the effect too extreme.) This helps
to avoid situations where the route planner suggests a route
that cannot reasonably be followed without timing out. In
PUROFVIO this nonlinearity was not included, i.e. β1 = 1.

We found through testing that merely allowing the steer-
ing controller to opportunistically collect fuel tanks as it
passes them was sometimes insufficient. Thus we include
fuel tanks as optional waypoints in the graph constructed
by the route planner. The inclusion of optional waypoints
with rewards for collection in the standard TSP is known
as prize collecting [18]. As planning a longer route to pick
up fuel tanks may not always be worthwhile, we introduce
a boolean parameter β4 to control whether fuel tanks are
included. If they are, we tackle the route planning problem
by modifying the heuristic cost used by 3-opt for a candidate
route 〈v0, v1, . . . , vn〉 where v0 is the starting position and
v1, . . . , vn are waypoint and fuel tank positions. Let c denote
the route cost function without fuel tanks (Equation 1). Let
w be the index of the last waypoint in v1, . . . , vn (so that
vw+1, . . . , vn consists solely of fuel tanks) and let f(w) be
the number of fuel tanks in v1, . . . , vw. Then the heuristic
cost function for the candidate route is defined as

c′(〈v0, v1, . . . , vn〉) = c(〈v0, v1, . . . , vw〉)− β5f(w) (2)

for a constant β5 ≥ 0. That is, the cost function only
considers the portion of the route up to and including the last

waypoint, and subtracts a bonus from the cost for each fuel
tank included in this portion. This makes fuel tanks optional
without modifying 3-opt to explicitly consider them as such:
the decision not to collect a fuel tank is made by pushing
the tank to the end of the route, after the last waypoint.
The bonus is required since a route with fuel tanks almost
certainly has a higher cost than one without, so otherwise
the route planner would have no incentive to include them.

Collecting two fuel tanks in quick succession is rarely
a good idea: collecting a fuel tank when the ship’s fuel
counter is nearly full is wasteful, and fuel tanks do not
reset the counter for maximum time between waypoints. For
similar reasons it is rarely wise to collect a fuel tank at the
very beginning of the game. To discourage such routes, we
increase the weights of edges between fuel tanks and between
the starting position and a fuel tank by a constant β6.

C. Fitness function for steering

The fitness function used by the steering controller to
evaluate nonterminal states is a linear combination of seven
terms:

v(s) = α1m(s) + α2e(s) + α3(1− d(s))
+ α4fu(s) + α5ft(s) + α6du(s) + α7dc(s) . (3)

Here α1, . . . , α7 are constants to be tuned. The first three
terms are designed to guide the steering controller towards
the next waypoint, give a large reward for collecting the way-
point, and achieve a favourable position from which to set
off towards the next waypoint. The m(s) term measures the
number of waypoints on the route collected so far, the e(s)
term counts the number of waypoints collected out of route
order, and the (1 − d(s)) term measures the fraction of the
distance travelled towards the next waypoint, according to the
distance map. Whether the player is rewarded or penalised
for early collection of waypoints depends on the sign of α2.
When choosing the parameter values it is important to set
α1 > α3 so that there is a discontinuous jump in fitness
upon collecting the next waypoint. This helps to ensure that
states where the waypoint is collected are evaluated as strictly
better than those where it is not. If this condition does not
hold, the controller has a tendency to drive close to the next
waypoint but avoid collecting it [7].

The terms fu(s) and du(s) are the units of fuel consumed
and damage incurred respectively. In general the coefficients
α4 and α6 for these terms should be small, as making them
too large can introduce poor quality local optima into the
fitness landscape. Setting α6 too high results in a controller
that avoids lava at all costs, even when driving through lava is
necessary to collect the next waypoint. Even worse, setting
α4 too high results in a controller that prefers to remain
motionless at the starting point rather than spend any fuel.

The term ft(s) counts the number of fuel tanks collected
out of route order, i.e. not already counted in m(s). If fuel
tanks are not included in the route, this term rewards the
controller for opportunistically collecting fuel tanks whilst
driving between waypoints. The term dc(s) measures the
damage from wall collisions in the game up to state s.
Collisions with normal walls increment the measure by 1,
and collisions with red walls by 3 (as they do three times
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Fig. 3. Illustration of a low quality local optimum in a simplified
1-dimensional version of MO-PTSP. The fitness function gives a reward
for approaching the next waypoint but a penalty for damage incurred by
driving through lava (the ship takes damage only if its geometric centre,
marked ×, is over the lava). The graph plots the fitness as a function of
the x-axis position of the ship, assuming constant velocity. The playout
length is insufficient for the search to determine that driving through the
lava eventually leads to the next waypoint and thus a higher fitness. Thus
the controller is stuck in the local optimum near the edge of the lava. The
panic mode fitness function ignores damage from lava, so has no local
optimum here.

the damage to the ship). Collisions with blue walls, which
do not damage the ship, are not counted. One could argue
that ft and dc are superfluous, as collecting fuel tanks and
colliding with walls are already measured by fu and du re-
spectively. However including them as separate terms allows
their weights to be tuned separately to produce behaviours
not possible with fu and du alone. For example we can set
α7 high to obtain a controller that avoids collisions, without
the risk of setting α6 too high and making the controller too
reluctant to drive across lava.

D. Panic mode

Given the complexity of the fitness function used by
steering, and the potential need to incur penalties in order to
progress towards the next waypoint, the steering controller
may sometimes become stuck in a low quality local optimum
for the fitness function which does not correspond to reaching
(or making progress towards) the next waypoint. This is
illustrated in Figure 3. This type of problem arises when one
local optimum is separated from a better one by a “valley” of
low fitness, but the search is too short-sighted to see across
the valley. This is similar to the horizon effect in minimax
search [19], where the AI is unable to accurately evaluate
a move due to some consequence of the move occurring
beyond the depth cutoff. In the PTSP competitions we solved
this type of problem by careful tuning of the parameters,
but given the additional parameters present in our MO-PTSP
controller, preliminary experiments highlighted a need to
address the problem of local optima directly. We introduce
panic mode, a mode of operation in which the controller’s
goal is to collect the next waypoint (and avoid losing the
game by timing out) at any cost.

When the search for the next macro-action has used 3
4 of

its time budget, i.e. when the macro-action currently being

executed is 75% complete, we compare the fitness of the
current root state vcurrent with the average backpropagated
reward vtree at the root of the tree. If

vtree + α0 ≤ vcurrent (4)

(where α0 is a constant), we conclude that the search is
failing to find lines of play that make progress towards the
next waypoint. The value vtree is a measure of the expected
fitness at the end of the playout, so inequality (4) implies that
the search has failed to find a line of play that improves upon
the current state. In this case we abandon the current search,
and spend the remaining time searching for the next macro-
action using an alternative set of fitness function parameters.
These parameters use a reduced search depth of 3 (the hand
tuned search depth is 8), ignore fuel and damage (α4 = α5 =
α6 = α7 = 0), and give a very high reward for collecting
the next waypoint (α1 = 10, compared to the hand tuned
value α1 = 1). These settings cause the controller to greedily
collect the next waypoint ignoring other considerations.

IV. TUNING AND PERFORMANCE

A. Parameter tuning

Our controller has a number of parameters and settings,
listed in Table I. For the 2012 PTSP competitions, there was
a small number of parameters and good values were chosen
by hand. Given the increased number of parameters and the
multiple objectives in the MO-PTSP, the effect of changing
parameters is unpredictable and hand tuning is unreliable.
Instead we opted to tune parameters automatically using a
multi-objective optimisation approach. For some parameters
we retained the hand tuned values in order to improve the
effectiveness of parameter optimisation. For example, panic
mode was implemented as a last resort measure, so the
parameters governing when it is activated were not tuned
during these experiments.

To perform optimisation of parameters we used the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm [8]. The CMA-ES algorithm samples a new
population of individuals at each iteration and uses the fitness
of the individuals to adjust the distribution over parameters.
An individual consists of an assignment of value to each
parameter, and fitness was measured by testing these values
on all 10 starter kit maps and averaging the time, fuel and
damage scores as proportions of the maximum observed
scores. The CMA-ES algorithm updates the distribution over
parameters at each iteration using the ranking of individuals
in each population and not their relative fitness values.
When applying the CMA-ES algorithm to a multi-objective
problem there is not a single fitness value to perform a
ranking with. To handle the multiple objectives in ranking of
individuals, we modified the CMA-ES algorithm in a similar
way to [9] using non-dominated sorting on the population
of parameter vectors generated on each CMA-ES iteration.
Non-dominated sorting assigns all individuals in a population
which are not dominated by any other member of the
population rank 1, then assigns all unranked individuals non
dominated by another unranked individual rank 2, and so on.
To ensure that the algorithm chooses robust parameter values
that collect all waypoints, we consider an individual that fails
to collect all waypoints to be dominated by one that succeeds,



2012 Hand CMA-ES
Parameter Description Type Range PTSP tuned Run 1 Run 2 Run 3
Distance mapper

γ Distance weight for lava Real [0, 2] 0 0.5 0.0573 0.493 0.732

Route planner
β1 Exponent for edge weight Real [1, 2] 1 1.5 1.76 1.38 1.11
β2 Penalty for indirect paths between nodes Real [0, 500] 150 150 341 332 92.3
β3 Penalty for sharp turns at nodes Real [0, 500] 80 80 −41.8 498 28.8
β4 Include fuel tanks in the route? Bool {false, true} false true true false true
β5 Bonus for each fuel tank in route Real [0, 500] − 200 416 − 516
β6 Penalty for consecutive fuel tanks in route Real [0, 1000] − 1000 240 − 728

Steering controller
T Macro-action length Int {5, . . . , 20} 15 15 9 12 11
d Playout depth Int {1, . . . , 10} 8 8 7 7 7
C UCB1 exploration constant Real [0, 2] 1.0 1.0 0.505 0.674 0.428
α0 Score threshold for panic mode Real [0, 1] − 0.1 0.1 0.1 0.1

Fitness function
α1 Weight for number of waypoints collected Real [0, 1] 1.0 1.0 1.70 1.32 0.807
α2 Weight for waypoints collected out of order Real [−1, 1] −1.0 −1.0 0.504 0.109 0.659
α3 Weight for distance to next route node Real [0, 1] 0.75 0.75 1.61 1.24 0.720
α4 Penalty per unit of fuel used Real [0, 0.01] 0 0.001 0.00179 0.00157 0.000309
α5 Bonus per fuel tank collected Real [0, 1] 0 0.2 0.552 0.318 0.287
α6 Penalty per unit of damage Real [0, 0.01] 0 0.002 0.00293 0.00118 0.00175
α7 Penalty per wall collision Real [0, 0.5] 0 0.3 0.314 0.108 0.00655

TABLE I. SUMMARY OF PARAMETERS FOR THE MO-PTSP CONTROLLER, WITH VALUES FOR THE 2012 PTSP CONTROLLER, HAND TUNED
VALUES AND THREE RUNS OF THE CMA-ES ALGORITHM

regardless of time, fuel and damage. Finally, individuals of
the same rank were ranked according to the sum of time, fuel
and damage scores (with equal weight). The performance of
each individual is noisy due to the random nature of MCTS,
so the ranking of individuals is approximate. There are more
general approaches to performing this ranking [9] but due to
the noise in our problem and limited implementation time
these methods were not tested. Other than our modifications
to the ranking of individuals on each iteration, we used a
standard implementation of the CMA-ES algorithm.

The modified CMA-ES algorithm was run for 400 iter-
ations and produced the values presented in Table I. This
was repeated three times, with each run producing different
parameters (in some cases radically different). Table I gives
a suggested range for each parameter, which was used to
sample the initial population, but CMA-ES is able to tune
the parameters outside these ranges if doing so is beneficial.

B. Performance

We measured the performance of our controller by per-
forming 10 trials on each of the 10 maps provided with
the competition starter kit. We tested six controllers in
total: the PUROFVIO controller entered into the 2012 PTSP
competitions, the PUROFMOVIO controller described in this
paper with hand tuned parameter values, the same controller
with β4 = false (i.e. without fuel tanks included in the route),
and PUROFMOVIO with the three sets of parameters tuned
by CMA-ES. Results are shown in Table II and Figure 4.
Results are averaged over the 100 trials (10 trials on each of
the 10 maps). For example, the “waypoints missed” figure
for the 2012 controller is 0.29, meaning that this controller
missed a total of 29 waypoints out of a possible 1000 (10
per run for 100 runs).

The 2012 PTSP controller achieves the fastest aver-
age time but sometimes fails to collect all waypoints and
performs poorly on fuel and damage. Both hand tuned

Average per run
Waypoints

Controller missed Time Fuel Damage
2012 PTSP controller 0.29 1394.4 632.0 444.8
Hand tuned 0.15 1951.9 256.3 461.8
Hand tuned (no fuel) 0.06 1718.1 396.4 420.2
CMA-ES run 1 0.01 1575.2 295.8 392.3
CMA-ES run 2 0.00 1547.7 355.7 412.1
CMA-ES run 3 0.01 1767.9 160.7 396.1

TABLE II. COMPARISON OF CONTROLLER PERFORMANCE

WaypointsMmissed Time Fuel Damage

2012MPTSP
controller

HandMtuned

HandMtunedM(no
fuelMinMroute)

CMA-ESMrunM1

CMA-ESMrunM2

CMA-ESMrunM3
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Fig. 4. Parallel coordinate plot [20] of controller performance, plotting the
data in Table II. Each data point is averaged over a total of 100 trials, with
10 trials on each of the 10 starter kit maps. On each axis, lower values are
better.

controllers are strictly dominated by one or more CMA-
ES tuned controllers, demonstrating clearly the benefit of
automatic parameter tuning. The parameter tuning heavily
penalised any controllers which failed to complete a map so
unsurprisingly the CMA-ES tuned controllers have a lower
rate of waypoints missed than the hand tuned controllers.

Comparing the performance of the two hand tuned con-
trollers, and the performance of CMA-ES run 2 to that of



runs 1 and 3, it is evident that including fuel tanks in the
route yields lower fuel consumption at the expense of slower
times. CMA-ES run 3 achieves the lowest score for fuel
consumption, at the expense of relatively slow times. The
performance of CMA-ES runs 1 and 2 is similar but not
identical: run 1 (which includes fuel tanks in the route)
performs better on fuel and damage but run 2 (which does
not includes fuel tanks) achieves slightly faster times.

All three CMA-ES tuned controllers perform well, and
none dominates the others. Each of the three CMA-ES
runs succeeded in finding good parameter values, although
the actual values vary greatly between runs (see Table I).
The three CMA-ES tuned controllers place slightly different
importance on optimising for time, fuel or damage. The
CMA-ES tuned parameters also performed better than the
hand tuned parameters and overall the tuning method proved
effective, finding robust sets of parameters which collected
all waypoints more reliably than the hand tuned parameters.

Automatic parameter tuning also provides insight into the
importance of some of the parameters for our controller. In
earlier work [3] we exhaustively tested different values of
macro-action length T and playout limit d, concluding that
values of T = 15 and d = 8 performed best. The CMA-
ES tuned parameters produce similar values with the macro
action length 9 ≤ T ≤ 12 and the playout limit d = 7 in
each case. As was discussed in Section III-D the weight α1

for the number of waypoints collected needs to be greater
than the weight α3 for the distance to the next route node.
This is the case for all three tuned parameter sets. It is also
interesting to note that the magnitude of these two parameters
is not important as long as the other evaluation terms and
the UCB1 exploration constant are scaled accordingly; the
different set of parameters use different magnitudes, and
exhibit this scaling.

There are a few anomalous parameter settings, such as
negative penalty for sharp turns in run 1 and a very small
penalty for damaging collisions in run 3. We would normally
expect such choices to be detrimental to performance, so this
may be a case of over-fitting to the training maps, where
these choices perhaps do not influence the result. One weak-
ness in our methodology is in averaging the time, fuel and
damage scores across all maps. Since achieving good scores
is easier on some maps than others, performance on the
maps which require the most time/fuel/damage are effectively
given greater weight in our evaluation. For example one of
the maps is maze-like, and takes two to three times as long to
complete as another map consisting mainly of open space, so
the former map has two to three times more influence on the
average score than the latter. This may have resulted in our
tuning methodology over-fitting to the more complex maps
in the already limited set of training maps.

C. Impact of panic mode

We tested versions of the hand tuned and CMA-ES tuned
controllers with panic mode disabled (the 2012 controller
does not have panic mode). The CMA-ES tuned controllers
almost always succeed in collecting all waypoints on the
map, missing at most 0.01 waypoints on average (i.e. at most
1 waypoint in 100 trials). This is true with or without panic

mode: the problem when a waypoint is missed is not one of
being trapped in a low quality local optimum, but rather an
unlucky situation on one map in particular where the ship
occasionally becomes trapped in a tight space. The ranking
we use for CMA-ES heavily penalises individuals for failing
to collect all waypoints, so it is unsurprising that the resulting
controllers are robust in this sense.

In contrast, panic mode does improve the robustness of
the controller with hand tuned parameters: this controller
misses 0.15 waypoints on average per run with panic mode,
but 0.84 waypoints without panic mode. The hand tuned
controllers without fuel tanks in the route miss 0.06 and
0.28 waypoints respectively. This shows that panic mode
can be beneficial, but careful parameter tuning can render
it unnecessary.

In cases where the controller successfully collects all
waypoints without panic mode, the inclusion of panic mode
does not significantly change the controller’s time, fuel and
damage scores. Indeed we see that panic mode is rarely (if
at all) invoked in these cases.

V. CONCLUSION

This paper presents a controller for MO-PTSP, which
builds upon our world champion PTSP controller [7], [3].
Both controllers use steering based on MCTS with macro-
actions, depth limiting and heuristic evaluation. The fitness
function used by the MCTS steering controller is informed by
a pre-planning step combining computer graphics techniques
(scanline flood fill), classical TSP heuristics (multiple frag-
ment and 3-opt) and a heuristic evaluation for route cost. This
architecture was developed for the single-objective PTSP but
readily applies to the more complex multiobjective problem,
with appropriate modifications to the evaluations used by
route planning and steering.

Automatic parameter tuning significantly improved the
performance of our controller when compared to hand tuned
parameters. We tried automatic parameter tuning for our
entry to the 2012 PTSP competition, but did not obtain
any measurable improvement over the hand tuned values.
The increased number of parameters and the multi-objective
nature of MO-PTSP significantly increase the difficulty of
hand tuning. Our parameter tuning methodology is a new
component to our controller architecture and could easily be
re-used for a different game. For the MO-PTSP we ranked
controllers using non-dominated sorting and other features
to account for the objectives of the game. In particular
controllers which failed to collect all waypoints on a map are
considered to be dominated by controllers which succeeded.
This resulted in our tuned controllers having a lower rate of
failure compared to the hand tuned controller.

Using depth-limited MCTS to traverse the state-action
graph of a single-player game can be thought of as an
instance of local search. As with any local search technique,
the ability of the algorithm to find a goal state can be
harmed if the fitness landscape has local optima that do
not correspond to goal states. We propose a system that
uses the statistics collected at the root of the MCTS tree
to detect when the agent is stuck in such a local optimum
(i.e. in a decision cycle which does not lead to visiting the



next waypoint) and responds by restarting the search with
an alternative “panic mode” fitness function. The average
reward at the root is a good measure of the expected value
of the principal line of play found by MCTS and can be
interpreted as a measure of the quality of the lines of play
found by the search. A topic for future work is to investigate
other ways in which this statistic can be monitored as the
search progresses, and how the behaviour of the search can be
modified in response. This could be useful for domains where
there is uncertainty or inaccuracy in the forward model,
where good lines of play may be difficult to find using a
single fitness function. We present panic mode as a first step
in this direction.

For MO-PTSP specifically, there are other potential mod-
ifications to our controller. We experimented with additional
macro-actions that do not apply constant thrust, for example
applying thrust only on odd-numbered time steps. The ratio-
nale was to allow the controller to manoeuvre the ship more
slowly but using less fuel than the full thrust macro-actions.
However these additional macro-actions increase the branch-
ing factor in the tree, and we found this to be detrimental to
performance. It could be that combining these actions with
a search enhancement such as progressive unpruning [21]
would mitigate the extra branching factor. Since the ship
in MO-PTSP is subject to a drag force proportional to its
velocity, travelling at faster speeds uses more fuel per unit
distance. Thus we could try conserving fuel by imposing a
maximum speed on the ship, with macro-actions that only
apply thrust when travelling below this speed.

The hierarchical architecture of a pre-planning step com-
bined with depth limited search during play has the potential
to apply to a wide variety of games and sequential decision
problems in (discretised) continuous real-time environments.
Combining this architecture with automatic parameter tuning
or dynamic adjustment of the fitness function to escape
poor quality local optima (or both) yields AI agents that
are effective at optimising fitness whilst being robust to the
pathologies of a complex fitness landscape.
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