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Abstract—We present a controller for the Physical Travelling
Salesman Problem (PTSP), a path planning and steering problem
in a simulated continuous real-time domain. Our approach is
hierarchical, using domain-specific algorithms and heuristics to
plan a coarse-grained route and Monte Carlo Tree Search (MCTS)
to plan and steer along fine-grained paths. The MCTS component
uses macro-actions to decrease the number of decisions to be
made per unit of time and thus drastically reduce the size of the
decision tree. Results from the 2012 WCCI PTSP Competition
show that this approach significantly and consistently outper-
forms all other submitted AI controllers, and is competitive with
strong human players. Our approach has potential applications
to many other problems in movement planning and control,
including video games.

I. INTRODUCTION

The physical travelling salesman problem (PTSP) extends
the travelling salesman problem (TSP) [1] into a continuous
real-time domain. In TSP the agent must choose a subset of
the edges of a weighted graph which forms a tour covering
all vertices, aiming to minimise the total weight. In PTSP
the agent moves on the 2-D plane under Newtonian physics,
and must find a path passing through all waypoints, aiming
to minimise the time taken to travel this path. In this paper
we present the details of our submission to the 2012 PTSP
Competition1 [2], which uses a number of novel techniques
that may be applicable to a variety of other domains. In the
WCCI 2012 PTSP competition, our controller significantly
outperformed all other submissions to the AI competition.
Our controller also performed strongly in the human versus
AI competition, achieving second place overall and either
obtaining or being within a small margin of the best score
on each map.

Monte Carlo Tree Search (MCTS) is a game tree search
algorithm that has yielded recent successes in games where
traditional heuristic-based search techniques (such as depth-
limited minimax) perform poorly [3]. Go is a prime example
of such a game [4], [5], although MCTS has been applied to
many other domains [6]. In its most basic form MCTS does
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not require expert domain knowledge, although it can often
be enhanced with such information if it is available. MCTS is
anytime: rather than requiring a fixed amount of CPU time, the
algorithm attempts to make the best possible use of whatever
CPU time is available.

PTSP is real-time in the sense that the AI agent must
make decisions within strict time limits. As the environment
is simulated on a computer, it is not real-time in the sense of
continuous time: the game proceeds in discrete time steps,
one every 40 milliseconds. However simply searching the
decision tree induced by making one decision per time step
would be ineffective: the tree has a branching factor of 6 and
a depth varying between 1000 and 10000, making 101500 a
conservative estimate for its size. This dwarfs the tree size of
even the most complex turn-based game.

The majority of applications of MCTS are to turn-based
games such as board games. However MCTS has been applied
to some real-time games, such as Tron [7], [8], Pac-Man [9],
[10], [11] and others. Two common themes are present in these
applications: the anytime nature of MCTS is clearly beneficial
when decision time is severely limited; however, pure MCTS
with random simulations tends to be weaker than e.g. MCTS
modified with early cutoff and heuristic evaluation. Perez et
al [12] apply MCTS to a simplified version of PTSP, finding
that embedding of basic heuristic knowledge significantly
improves performance, but even so the agent lacks the ability
to plan ahead and instead takes a greedy approach.

This paper presents a novel MCTS-based approach to the
physical travelling salesman problem. Our approach has three
key features. Firstly, the agent does not choose actions but
macro-actions, which in this case specify a single action to be
repeated over multiple time steps. The use of macro-actions
yields a linear reduction in tree depth and thus an exponential
reduction in tree size. Secondly, the MCTS search is depth-
limited, with a heuristic evaluation function for nonterminal
states. This allows MCTS to achieve short-term goals (i.e.
visiting the next waypoint) when the long-term goal (i.e.
having visited all waypoints) is several hundred macro-actions
into the future. The idea of depth limited MCTS was also
proposed by Samothrakis et al [9] for the game of Ms Pac-
Man. Thirdly, the heuristic evaluation is not static but is
informed by a higher-level planning phase. The evaluation
function rewards waypoints being collected in a particular
order, and uses map features to guide the agent towards the
next waypoint. Both the ordering and the map features are
computed by the high-level planner rather than being hard-
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coded at design time.
This hierarchical approach allows us to use different AI

techniques for higher-level planning (finding the best order
in which to visit the waypoints) and lower-level decisions
(finding the fastest path to the next waypoint). We propose
macro-actions, depth limiting and hierarchical planning not as
techniques specific to PTSP, but as promising directions for
the application of MCTS and other discrete AI techniques to
games and decision problems with large state spaces and/or
real-time aspects in general.

The structure of this paper is as follows. Section II describes
the PTSP and the associated competition. Section III presents
our domain-specific approach to the higher-level decision
problem of route planning, i.e. choosing the order in which
to visit the waypoints. In Section IV we give our MCTS-
based approach to the lower-level problem of steering, i.e.
planning the sequence of actions to follow the route as quickly
as possible. Section V presents results from the 2012 WCCI
PTSP competition, justifying that our approach is very strong
compared to other AI approaches and human players. Finally
Section VI gives some concluding remarks and directions for
future work, discussing how the ideas in this paper may apply
to domains other than PTSP.

II. THE PHYSICAL TRAVELLING SALESMAN PROBLEM

The physical travelling salesman problem (PTSP) is an
extension of the travelling salesman problem (TSP) which adds
a physical environment. In the PTSP, a spaceship must visit
all waypoints on a two-dimensional map in as short a time
as possible. The ship moves according to a physical model
based on Newtonian mechanics, updated in (simulated) real-
time. This leads to a key distinction between the TSP and
the PTSP: in the TSP the cost of travelling between two
nodes is always the same; in the PTSP the cost of travelling
between two waypoints depends on the ship’s momentum and
direction when it arrives at the first waypoint. The map also
includes static obstacles. There is no penalty for colliding with
obstacles, except that collisions are inelastic (the ship bounces
off the obstacle and loses some, but not all, momentum).

The version of the PTSP being studied is that being used
for the 2012 PTSP competition [2] held at WCCI 2012. The
competition version of the PTSP had the following additional
constraints:

• Entries are evaluated on maps which are not seen in
advance but always contain 10 waypoints.

• Each entry is allowed to perform initial calculations for
up to 1 second per map before the timer starts.

• An input must be made every 40ms and a waypoint must
be visited at least every 1000 steps.

Control of the ship is discrete, and similar to the classic
video game Asteroids [13]: the ship has a single thruster at
the rear, so to accelerate in a particular direction it must first
rotate (with fixed angular velocity) to face that direction. At
each time step the agent must decide whether or not to fire the
engine, and whether to rotate left, rotate right or not rotate.
Thus 2× 3 = 6 actions in total are available as inputs to the

ship. Since there are 10 waypoints and one must be visited
at least every 1000 simulation steps, the game lasts for up
to 10000 steps. The maps used for the competition are not
shown to competitors, but the software kit comes with 10
example maps which are also used for the human versus AI
competition.

The PTSP is an interesting problem to study because it fea-
tures some of the challenges presented by modern mainstream
commercial video games, but has simple game mechanics. In
particular it requires forward planning in a modelled physical
environment, with decisions being made with high frequency.
Additionally the PTSP competition takes place on unseen
maps, which motivates the development of generic techniques
that do not need expert knowledge or large amounts of upfront
computation. Another advantage is that the PTSP competition
allows human players to compete for high scores, which
provides a useful benchmark.

III. ROUTE PLANNING

We plan the order in which we will visit waypoints in an
initial route planning stage, described in this section. Once the
order of waypoints is established, we use an MCTS approach
to steer along this route, discussed in Section IV. Note that
the route specifies only the order of the waypoints, not the
paths that must be taken between them. Since the PTSP agent
has momentum and a maximum angular speed, the cost of the
path depends not only on its length but also on the angles
through which it turns.

The route planning process has two phases. First, a flood
fill algorithm [14] is used to compute distance maps, which
specify the distance of every waypoint from every other point
on the map (Section III-A). These distance maps can be
used to find shortest paths between waypoints; although the
steering algorithm does not actually follow these paths, they
can be used to estimate the angles of entrance and exit for
each waypoint (Section III-B). The second phase uses these
distances and angles to reduce the route finding problem
to an instance of TSP, and uses the well-known multiple
fragment [15] and 3-opt [16], [17] heuristics, suitably modified
to bias towards routes without sharp turns, to find a solution
(Section III-C).

A. Computing distance maps

For route planning, it is necessary to estimate the travel
time between all pairs of waypoints, taking obstacles into
consideration. For the evaluation function used by the steering
algorithm (Section IV-C), it is necessary to find the distance
between the ship and the next waypoint, again accounting for
obstacles. Instead of computing these distances when needed,
using A* pathfinding for example, we take advantage of
the pre-processing time allowed by the rules of the PTSP
competition and compute up-front the distance between every
waypoint and every other non-obstacle point on the map.

Maps for the PTSP are represented as 2-dimensional arrays,
where each cell is either an obstacle or open space. This
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Fig. 1. An example of a distance map for the point marked ×. This is a
contour map: lines show regions where the distance map value is a multiple
of 25.

bitmap-like representation is particularly amenable to algo-
rithms from computer graphics. Distance maps are computed
using a modified scanline flood fill algorithm [14].

The distance map for waypoint i is a 2-dimensional array
Di. After the distance map is computed, the entry Di[x, y] is
the distance of point (x, y) from waypoint i. Here “distance”
is the minimal cost of a “king’s move” path through the cells
of the map, where a horizontal or vertical move has a cost of
1 and a diagonal move has a cost of

√
2.

The algorithm begins at waypoint i, and scans to the
left and to the right until it encounters the first obstacle
cell in each direction. Whilst scanning, each cell has its Di

value updated according to the values of its neighbours, and
unfilled non-obstacle cells immediately above and below the
current scanline are enqueued to be used as starting points for
subsequent scans. The algorithm terminates when the queue
is empty, i.e. when all cells reachable from waypoint i have
been filled (assigned a value in Di).

It is possible for a map to feature spaces or corridors too
narrow to accommodate the ship. Before computing the dis-
tance maps, we surround every obstacle cell with a +-shaped
region of obstacle cells, whose radius is equal to the ship’s
radius. A +-shaped rather than circular region is used purely
for computational speed: for the purposes of removing narrow
corridors, both are equally effective.

Figure 1 shows an example of a distance map. Note that
since distances are computed based on orthogonally and
diagonally adjacent cells, the contours are octagonal rather
than circular. The algorithm could be modified to more closely
approximate circular contours, but for our purposes this is a
good tradeoff between speed and accuracy.

B. Path directions

It is useful to estimate the angles at which the ship will
enter and leave each waypoint on a particular route. This is

u

v

uv

Fig. 2. Computing the path direction −→uv. The thick grey line is the distance
map traversal path, according to v’s distance map. The dotted line links u
with the first point on the path such that this line is obstructed. The vector
−→uv is the unit vector in the direction of this line.

not simply the angle of a straight line drawn between one
waypoint and the next, as this line may be obstructed.

Distance maps can be traversed to find a path from u to
v. Let Dv be the distance map for waypoint v. Then a path
is p0, p1, . . . , pk, where p0 = u, pk = v, and pi+1 is the
neighbour of pi for which Dv[pi+1] is minimal. These distance
map traversal paths, although “shortest” with respect to a
particular metric, are a poor approximation of the paths taken
by the MCTS steering controller.

The path direction at u towards v, denoted −→uv, is an
approximation of the direction in which the ship leaves u when
travelling towards v, or enters u when travelling from v. It
is obtained by following the path from u to v, as described
above, until the first instance where the line between u and the
current point pi is obstructed. We then take −→uv to be the unit
vector in the direction of pi−u. This is illustrated in Figure 2.
This process of stepping along the path until line-of-sight with
the starting point is lost, rather than e.g. stepping along a
fixed distance, ensures that the path directions do not suffer
the same bias towards diagonal and orthogonal movement as
the paths themselves and thus more closely approximate the
direction of the ship (assuming the steering algorithm does
not choose a path completely different to the distance map
traversal path, which is not guaranteed). This process is similar
to the string-pulling technique [18] often used in pathfinding
for video games.

C. Planning the waypoint order

All of the maps used in the PTSP competition have exactly
10 waypoints. Solutions to 11-node min-weight Hamilton path
problems which are close enough to optimal for our purposes
can be found very quickly using the greedy multiple fragment
heuristic [15] and 3-opt local improvement [16], [17].

3-opt normally seeks to minimise the sum of edge weights
on the path. To account for the momentum of the agent,
we instead seek to minimise a cost function incorporating
terms that penalise sharp turns at waypoints and indirect paths
between waypoints in addition to the sum of edge weights.
Multiple fragment merely provides an initial guess to be
refined by 3-opt, so little would be gained by modifying
multiple fragment in a similar way.

For vertices u and v:
1) let d(u, v) be the shortest path distance between u and

v, computed using the distance map;
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2) let e(u, v) be the Euclidean distance between u and v;
3) let −→uv be path direction at u towards v.

Then the cost of a path v0, v1, . . . , vn, assuming that the ship
is initially facing in direction u0, is

c(v0, . . . , vn) =
n∑

i=1

d(vi−1, vi) + βp

n∑
i=1

d(vi−1, vi)

e(vi−1, vi)

+ βw

(
−u0 · −−→v0v1 +

n−1∑
i=1

−−−→vivi−1 · −−−→vivi+1

)
(1)

for constants βw and βp. The first term is the sum of edge
weights. The term modified by βp measures the directness
of the path from one waypoint to the next, where a path is
considered more indirect the more it deviates from a straight
line in open space (i.e. the more the ratio of the path distance
to the Euclidean distance increases). The term modified by βw
measures the sharpness of the turns the ship needs to make
when leaving the starting point and when travelling through
each waypoint. If passing through a given waypoint does not
require a change of direction, the incoming and outgoing
vectors point in opposite directions and so their dot product is
−1 (i.e. the cost is negative). If passing through the waypoint
requires a 180◦ turn, the dot product is +1 (i.e. the cost is
positive).

IV. STEERING

This section describes the approach used to steer the ship
along the route chosen by the methods in Section III, i.e. to
plan and follow the paths from one waypoint to the next. (In
line with video games terminology, “steering” here includes
acceleration as well as rotation of the ship.)

We send an input to the ship once every 40ms, in order to
steer the ship around obstacles and towards waypoints. If the
choice of input on each time step is considered as a decision
tree, then a tree search method can be used to determine the
best input to make. On any map the number of steps taken
will be between 1000 and 10000, so with 6 possible actions
per step this means there are between 61000 and 610000 nodes
in the tree. The problem is then to find the first terminal node
in this tree (the shortest path to collect all 10 waypoints). The
depth of this tree implies that an evaluation function for non-
terminal states is needed.

The depth reached by any standard tree search approach
within 40ms is unlikely to result in the ship moving signif-
icantly closer to any immediate goal (especially if the ship
has low momentum). This has a big impact on the ability of
tree search to plan far ahead in anticipation of obstacles and
tight turns. Therefore we take an approach which drastically
reduces the size of this tree by restricting the set of paths the
steering controller can follow. This is done by building a tree
of macro-actions where each macro-action takes multiple in-
game steps to perform. Here we trade off the approximation
of the decision process against the improvement in decision
quality resulting from searching further forward in the decision
tree.

The tree search algorithm we used is Monte Carlo Tree
Search (MCTS) based on the UCT algorithm [19]. For this
problem MCTS has a key advantage over other algorithms
such as A* search and Minimax search in that it is any-
time. This means that while a macro-action is being executed,
several MCTS iterations can be performed during each 40ms
decision step adding up to a sufficient number of iterations
before the next macro-action is executed. This makes very
efficient use of the computational time available which may
have been difficult to achieve using alternative search methods.
Additionally the asymmetric tree growth of MCTS means that
more time will be spent searching branches of the tree that
move the ship closer to the goal.

A. Macro-actions

The steering problem for PTSP can be thought of as a
directed graph, whose nodes are states and whose edges are
actions. We define a macro-action as a sequence of actions
M = 〈a1, . . . , an〉. Executing a macro-action corresponds to
playing out its constituent actions in sequence. A decision tree
of macro-actions can be built, whose nodes form a subset of
the nodes of the underlying decision tree.

In PTSP the set of legal actions from a state (i.e. the set of
edges out of the corresponding node) is the same for all states.
If this was not the case, more care would be needed in defining
macro-actions: if the macro-action is to be applied from state
s0, and si is the state obtained by applying actions a1, . . . , ai
in sequence from s0, then ai+1 must be a legal action from
si.

For the PTSP the purpose of macro-actions is to reduce
the size of the problem and increase the ability of tree search
methods to perform forward planning. This can be achieved by
coarsening the granularity of possible paths and preventing the
ship from making small (sometimes meaningless) adjustments
to speed and direction. The macro-actions we use in this paper
consist simply of executing one of the six available actions
(see Section II), say a, for a fixed number of time steps T :
Ma = 〈a, a, . . . , a〉, where a appears T times.

Earlier versions of our controller used more complex macro-
actions, rotating to one of several pre-specified angles while
thrusting or not thrusting. A problem arose relating to different
actions taking different lengths of time to execute: since the
evaluation function (Section IV-C) is implicitly a function of
distance, MCTS tended simply to favour longer macro-actions
over shorter ones. Having each depth of tree corresponding to
a set amount of time and having MCTS roll out to a fixed
depth means instead that MCTS tries to find short paths, by
maximizing useful distance travelled in a fixed amount of time.

Since the game always takes between [1000, 10000] steps,
the game will take between [ 1000T , 10000T ] macro-actions. The
macro-action tree therefore contains between [6

1000
T , 6

10000
T ]

nodes, which represents a hundreds of orders of magnitude
reduction in the size of the problem to be solved (when
T ≥ 2). For example, suppose the length of the game is
2000 on average, and T = 15. The game tree contains
62000 ≈ 101556 states, whereas the macro-action tree contains
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Fig. 3. Examples of the path followed by the MCTS controller. The light
grey line has T = 30 corresponding to 90◦ turns. The black line has T = 10
corresponding to 30◦ turns.

6
2000
15 ≈ 10103 states. The size of the macro-action tree in this

example is comparable to the game tree size for a complex
board game: for comparison, the number of states in 9×9 Go
is bounded above by 81! ≈ 10120. The macro-action tree is of
the order 101453 times smaller than the full game tree.

The parameter T controls the trade-off between the granu-
larity of possible paths and the forward planning potential for
tree search. Since one rotation step corresponds to a rotation
of 3◦, a setting of T = 30 restricts the ship to only making
90◦ turns. (Note that the ship may have an initial velocity, and
may thrust while turning, so the restriction to 90◦ turns does
not restrict the path to 90◦ angles.) When using this setting,
the MCTS algorithm will find paths that have to bounce off
walls or follow convoluted routes to line up with waypoints. A
choice of T = 10 corresponds to 30◦ turns which allows for a
finer control of the ship and smoother paths. The difference is
illustrated in Figure 3 where the path with 90◦ turns is more
jagged (and takes longer to follow) than with 30◦ turns. The
price paid for path smoothness is tree size: to achieve the same
look-ahead time as a T = 30 tree of depth d and N nodes,
the T = 10 tree would need depth 3d and O(N3) nodes.

B. MCTS

The MCTS algorithm works by iteratively building a search
tree, adding one new node on each iteration. For an overview
of MCTS methods see [6]. Each MCTS iteration consists of
four distinct steps: selection (descending the portion of the
tree already constructed), expansion (adding a node to the
tree), simulation (playing out random moves to determine
the outcome of the game), and backpropagation (updating
the selected and expanded nodes according to the simulation
result). One of the key features of the MCTS algorithm is that
it expands the tree asymmetrically, balancing the exploitation
of promising lines of play with the exploration of untried lines
of play.

In the PTSP competition, the agent is allowed 40ms per
decision. While executing the current macro-action, we use the
CPU budget to continue searching the MCTS tree for the next
macro-action. This ensures that by the time the next macro-
action is required, the MCTS tree has accumulated several

Fig. 4. A plot of the evaluation of the current state by Equation 2 against
time, for an instance of PTSP. Vertical lines denote states where a waypoint
was collected whilst executing the previous macro-action. Note the jump in
evaluation score at these states.

thousand iterations. To avoid timing out, we measure the
maximum amount of time mT taken by an MCTS iteration
so far, and stop searching after 38 − mT milliseconds have
elapsed.

Additionally each roll-out is performed up to a fixed
depth, i.e. the total number of macro-actions performed during
selection, expansion and simulation is constant across all
MCTS iterations. This ensures that the evaluation function for
nonterminal states is always applied to states at the same depth
in the tree, and avoids looking ahead to regions of the tree
unlikely to significantly affect the current decision.

C. Evaluation Function

The evaluation of the ship being in a particular nonterminal
state s is calculated as

V (s) = αwsw + αr(1− sr) + αsss (2)

where sw is the number of waypoints that have been collected
so far along the route recommended by the route-planning
phase (Section III-C), sr is the distance of the ship from
the next waypoint, normalised so that the distance from the
previous waypoint to the next waypoint is 1 (Section III-A)
and ss is the speed of the ship. The α values are weights to
be tuned. Note that the evaluation explicitly does not reward
the agent for collecting waypoints early (out of route order):
otherwise the controller has a tendency to make detours to
greedily collect waypoints, which generally turns out to be
detrimental in the long term.

Choosing αr < αw means that there is a jump in reward
associated with collecting the next waypoint. See Figure 4.
This encourages the controller to take short cuts to the next
waypoint taking advantage of the physics of the game, which
would not occur if the controller was exactly following the
distance map traversal paths suggested by the route planning
phase. Similarly the purpose of the speed feature is to encour-
age the controller to favour paths with more momentum since
the amount of time taken is not directly represented in the
evaluation.
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A different evaluation is used at terminal states (when all
waypoints are collected):

V (s) = 10αw + αt (10000− t) (3)

where t ≤ 10000 is the number of time steps taken to collect
all the waypoints and αt is a constant. This ensures that
terminal states have an evaluation of at least 10αw, which
is higher than any non-terminal state, and that terminal states
that are reached in less time have a higher evaluation that
terminal states which took more time.

An initial implementation re-used the search tree statistics
between macro-action decisions: upon executing a macro-
action, the corresponding child of the root node was taken
as the new root node. This seems like a good idea, since
there should be useful information about future decisions in the
existing tree and effectively provides extra MCTS iterations.
However this surprisingly led to poor and erratic behaviour of
the controller. One possible explanation is that the simulations
are performed up to a fixed depth, so on subsequent decisions
the reward values which initially exist in the tree correspond
to a different depth and are not consistent with each other.
Schemes for re-using previous search data are a subject of
ongoing investigation.

D. Parameters

Table I summarizes all the parameters for the controller with
values that were tuned by hand through extensive trial-and-
error tests. The biggest challenge of parameter tuning was to
balance the macro-action length T with the maximum MCTS
search depth d. As illustrated in Figure 3 a lower value of
T results in smoother and potentially faster paths. However a
lower value of T (whilst keeping d fixed) reduces the search
horizon and limits the forward planning ability of the agent.
Increasing d increases the search horizon and improves the
agents ability to perform forward planning but exponentially
increases the size of the search tree. Consequently for higher
values of d fewer MCTS iterations will be performed in a given
amount of time, while the larger tree needs more iterations to
be searched effectively. This means that finer path granularity
comes at the price of forward planning so a balance must be
found.

V. PERFORMANCE

Table II summarises the improvement due to each aspect of
our approach. The table compares four controllers:

• Nearest waypoint evaluation: The evaluation used by
MCTS is as Equations 2 and 3, but sr is the Euclidean
distance (ignoring obstacles) between the ship and the
nearest waypoint.

• Distance maps with nearest waypoint ordering: The eval-
uation used by MCTS is as Equation 2, and sr is obtained
from the distance maps as with the final controller, but
the next waypoint is the one that is nearest to the ship
by Euclidean distance.

• Distance maps with TSP waypoint ordering (distance
only): The ordering of the waypoints is computed as

Parameter Value Description
βw 50 Penalty for sharp turns at waypoints (Equa-

tion 1)
βp 100 Penalty for indirect paths between waypoints

(Equation 1)
T 15 Length of macro-actions (Section IV-A)
d 8 Maximum depth of MCTS rollout, in macro-

actions (Section IV-B)
C 0.7 Exploration constant for the UCB1 for-

mula [19]
αw 1.0 Weight applied to the number of waypoints

visited (Equation 2)
αr 0.75 Weight of the distance to the next waypoint

(Equation 2)
αs 0.25 Weight of the ship’s speed (Equation 2)
αt 0.001 Weight of time taken to reach a terminal state

(Equation 3)

TABLE I
LIST OF PARAMETERS FOR THE FINAL CONTROLLER. THESE ARE DIVIDED

INTO THREE GROUPS: EVALUATION WEIGHTS FOR ROUTE PLANNING;
MCTS PARAMETERS FOR STEERING; EVALUATION WEIGHTS FOR

STEERING.

Algorithm Version Waypoints Time
Nearest waypoint evaluation 50 13249
Distance maps with nearest waypoint ordering 100 15888
Distance maps with TSP waypoint ordering (dis-
tance only)

100 14071

Distance maps with TSP waypoint ordering 100 13565

TABLE II
THE IMPROVEMENTS GAINED BY EACH ASPECT OF OUR APPROACH

ACROSS THE 10 PTSP COMPETITION STARTER KIT MAPS

described in Section III-C but only the distances (derived
from distance maps) are used in Equation 1 (βw = βp =
0).

• Distance maps with TSP waypoint ordering: The com-
plete algorithm used for the PTSP competition.

In each case, the other details of the algorithm (including
all parameter values) are as in the final controller.

The controller with nearest waypoint evaluation was unable
to find all 100 waypoints, due to having no way to find
paths around obstacles. All other versions successfully visited
all 100 waypoints. The biggest improvement comes from
planning the order in which waypoints will be visited. The
addition of direction and directness heuristics to route planning
significantly improves performance on three of the maps, by
approximately 200 time steps in each case. On the other seven
maps these heuristics do not change the waypoint ordering and
so the time taken is unchanged.

Table III presents the scores achieved by our agent on the
10 maps issued with the PTSP competition starter kit, taken
from the combined Human vs Bot results from the WCCI
2012 PTSP competition [2]. The scores recorded for each
agent and player are the best achieved over many trials. The
competition ran from 1 March 2012 to 28th May 2012. The
uploaded AI submissions get 5 attempts per map each time a
new version is uploaded, with the fastest time recorded; human
players can make an unlimited number of attempts through
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Map Our Score Our Rank Best Score Next Best Score
1 1298 3 1286 -
2 1043 4 973 -
3 1132 2 1117 -
4 1312 2 1311 -
5 1641 3 1580 -
6 1367 1 - 1381
7 1188 2 1181 -
8 1464 2 1451 -
9 1721 1 - 1785

10 1156 7 1102 -

TABLE III
A SUMMARY OF THE SCORES ACHIEVED BY OUR AGENT IN THE 2012

WCCI HUMAN VS. BOT PTSP COMPETITION. HERE THE “SCORE” IS THE
NUMBER OF TIME STEPS TO COLLECT ALL TEN WAYPOINTS ON THE MAP.

the website. Listed in Table III is the best score achieved by
our agent and our rank on each map. For maps where our
agent did not achieve the best score, the best score achieved
by another agent/human visitor is listed. For maps where our
agent achieved the best score, the score of the agent/human
in second place is listed. In every case in this table, the best
score or next best score was achieved by a human player. Our
agent was the best AI on seven of the 10 maps, and second
best on the other three.

Our agent has very competitive performance compared to
human players, being amongst the top 3 players on 8 out of
the 10 maps and being behind by only a small margin on
other maps. The map with the worst result is map 10, which
is fully open with no obstacles. Here the techniques applied
for planning routes and avoiding obstacles make little impact
on the performance of the algorithm. On the other hand, our
agent achieves the winning score on map 9, a maze-like map
with sharp turns and narrow corridors. This demonstrates the
effectiveness of our route planning and steering approaches for
more complex problems. Overall our entry placed second in
the Human vs. Bot competition, which was won by a human
player. Competition was close however: the winning player’s
average time per map was only 15.5 time steps faster than our
agent’s average time.

Table IV lists the competition results for the 2012 WCCI
PTSP competition, which had 31 submitted AI controllers.
Only results for controllers which scored points in the compe-
tition are listed. There were 20 hidden maps and submissions
were ranked for each map, then the final scores were derived
by awarding submissions points based on their rank on each
map. Our agent (username “Purofvio”) was the highest ranked
submission on 18 out of 20 maps, and second highest on the
remaining two maps. This result is a convincing victory, easily
outperforming all other AI entries.

VI. CONCLUSION AND FUTURE WORK

This paper presented an MCTS-based controller for PTSP.
In the WCCI 2012 competition, our approach beat all other
AI players (Table IV) and was highly competitive with the
best human players (Table III). Our approach has three key
features:

Rank Username Affiliation Points Awarded
1 Purofvio University of Bradford 196
2 st3f1 University of Le Havre 124
3 shavlir none 121
4 ICE DE Ritsumeikan University 88
5 hiten sonpal AI Hobbyist 84
6 melsonator None 64
7 IMarvinTPA IMarvinTPA 47
8 BBoy Alin Essex uni 19
9 axiom RPI 11
10 darklink259 RPI 6
11 Arkanis1991 UC3M 5
12 gongj2 RPI 4
13 eoinomurchu University College Dublin 3
14 Rocket None 3
15 aguc3m UC3M 2
16 nbgray None 2
17 kerlak UC3M 1

TABLE IV
COMPETITION RESULTS FOR THE WCCI 2012 PTSP COMPETITION.

1) The use of macro-actions to reduce the size of the game
tree by hundreds of orders of magnitude, and hence allow
search to look forward much further in time;

2) A hierarchical approach, in which a higher-level AI
reduces the problem to a sequence of sub-goals and a
lower-level AI achieves these sub-goals in sequence;

3) Using depth-limited rollouts within MCTS, with an eval-
uation function representing achievement of high-level
sub-goals at nonterminal states.

One important point about the hierarchical approach is that
the lower-level AI is not simply trying to achieve the current
sub-goal. The evaluation function is arranged to give a gradual
increase when progressing towards the current sub-goal and a
discontinuous jump upon achieving that sub-goal, as illustrated
in Figure 4. Thus the MCTS steering controller favours lines
of play that lead to achieving the current sub-goal (i.e. passing
through the next waypoint on the route), but amongst those it
prefers lines of play that put it in a more favourable position
to achieve the sub-goal after that.

The introduction of depth limiting and heuristic evaluation
is a major factor in the success of this approach, despite the
fact that it negates features of MCTS that are usually quoted
as its advantages over minimax search (the lack of a need
for a heuristic and, to an extent, the asymmetric depth of
the tree). However when MCTS is used to achieve short-
term goals in a hierarchical system, depth limiting makes
sense. As shown in Section V by the poor performance of our
steering controller coupled with greedy waypoint selection, the
hierarchical approach encompassing both route planning and
steering is needed to create competitive PTSP solutions.

Our heuristics, though domain dependent, do not rely on
what we would term “expert” domain knowledge. The heuris-
tic used in route planning relies only on the very basic intuition
that sharp turns should be avoided. The heuristic used in
steering is based on the almost trivial observation that moving
towards the next waypoint is beneficial, with the more complex
notions of which waypoint should be next and what it means
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to move closer to it being determined by our route planner AI.
Our AI for route planning is heavily domain dependent, re-

lying not on general-purpose game tree search but on special-
purpose algorithms and heuristics. Other approaches were tried
which used MCTS for route planning. These were effective
but took much longer to execute than the approach given in
Section III. They did however have a feature that may be useful
when the hierarchical approach is applied to other domains:
the steering controller could begin to follow a partial route
while the route planner was still working to refine it.

These techniques are ripe for application to other domains,
and this is a subject of current and future work. Possible
domains include car racing, first-person shooter games, strat-
egy games, and other video games which simulate movement.
As an anytime algorithm, MCTS has great potential for use
in real-time environments since it can make efficient use of
whatever computational resources are available.

In real-time domains the ability to make a different deci-
sion on every time step can be unnecessary, and results in
intractably large game trees. Simple macro-actions consisting
of repeating the same action for a fixed number of time steps
are a simple yet effective means of drastically reducing the size
of this tree. More complex macro-actions, such as repeating an
action until some condition is met or performing a sequence of
possibly different actions, may also be useful in some domains.
Another interesting direction for future investigation would be
to vary the macro-action length between levels in the tree,
allowing for more fine-grained control in the short term while
retaining the advantages of coarse-graining in the long term.

In real-time games, and other domains such as the class of
complex multiplayer strategy-heavy turn-based games known
as “Eurogames” (of which Settlers of Catan [20] is a well-
known example), a game can consist of hundreds if not
thousands of turns. This can make searching the game tree
for a winning terminal state almost impossible. However as
humans, we tend to break these games down into hierarchies:
the main goal (“win the game”) is decomposed into several
sub-goals (“capture territory X”, “maximise the amount of
resource Y ”), which are decomposed in turn until we reach
the level of individual actions. A hierarchical approach to such
games is attractive, and allows the flexibility to tailor the AI
technique used at each level in the hierarchy to the nature of
that particular decision problem. Hierarchical approaches to
planning have been considered in [21] for example.

In our PTSP controller, the higher-level route planner feeds
into the lower-level steering controller by means of an eval-
uation function. There is no feedback from lower to higher
levels. In other domains it may be useful to introduce such
feedback, with the lower-level planner feeding information
about the probability or difficulty of achieving certain sub-
goals to the higher-level planner, which could use this new
information to refine its plan.

MCTS tends to be tactically strong but strategically weak.
Arguably this is a limitation of game tree search, which by
its nature focusses on the next action to play rather than the
bigger picture. Macro-actions and hierarchical planning allows

MCTS to take a more strategic approach, by reducing strategic
decisions to tactical decisions on an abstracted higher-level
game. This is a promising approach for many games currently
considered difficult for search-based AI.
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