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Abstract

Automated generation of entire games is a challenging
task in computational creativity. This paper presents
some initial explorations with a system for generating
small puzzle games with simple mechanics but com-
plex emergent gameplay. Our system is designed to
enable collaboration between human designers and cre-
ative computer agents, and to explore the notion of writ-
ing code which itself writes code. Our aim is to produce
games in which deciphering the mechanics of the game
is itself a meta-mechanic, and where some puzzles may
be unsolvable (but not obviously so). We draw an anal-
ogy between unsolvable puzzles and unprovable math-
ematical conjectures: we are intrigued to see whether
the same force that compels mathematicians to perse-
vere with a possibly futile proof extends to the wider
population of gamers.

Introduction

This paper introduces TekaTekiTech1, a system for the gen-
eration of puzzle minigames. Our work on this system has
only just begun; this paper is a motivation and discussion of
our recent, present and future work.

Our aim is to create a design space which is both suf-
ficiently flexible to admit a wide variety of games, and in
which the density of interesting games is high enough to al-
low them to be found easily. To keep the density of games
high enough, we chose to limit the space to puzzle-type
games, of the type which exhibit fairly simple mechanics
to test the player’s reactions, dexterity and/or problem solv-
ing abilities. We did not set out with specific existing games
in mind for the game designer to produce; instead our aim
was to make available a range of interesting mechanics and
see how the designer combined them. The results so far,
based on random generation and tweaking by hand, are quite
unique puzzles which are difficult to classify in terms of
existing commercial games; some are reminiscent of the
minigames featured in the Mario Party and WarioWare se-
ries of games by Nintendo. However we are confident that
games in the style of more traditional puzzle games such as
Tetris, Minesweeper and Sokoban, as well as some arcade
games such as Pacman and Frogger, are also present in the
space.

1“Teka-teki” is Javanese for “puzzle”.

Our wider aim in this work is to investigate how players
respond to games which are discovered rather than created.
If a human game designer produces a game which is impos-
sible to win, or only winnable through superhuman dexter-
ity, then the player might reasonably say that the designer
has made a mistake. However if such a game is discov-
ered by an automatic game generator, we conjecture that the
player will be much more tolerant of the unwinnable game,
and indeed that coming up with an explanation for why it is
unwinnable might be a pleasure in itself. Ensuring solvabil-
ity is often a concern when automatically generating game
content (Smith, Butler, and Popović 2013); instead, we are
interested in the region of design space where even the de-
signer does not know whether the content is solvable. Deter-
mining solvability then becomes an objective for the player
rather than the designer.

Our work here fits into the context of automated whole
game generation. Due to the complexity of constructing
a multi-faceted object such as a game, only a few projects
have studied how to automate the entire process of gen-
erating a game. An important project in this area is the
work of Cook et al. on the ANGELINA system, which de-
signs entire games in a variety of genres using a co-operative
co-evolutionary programming approach (Cook, Colton, and
Gow 2015a; 2015b). The ANGELINA system has been par-
ticularly influential in games communities, for instance, as
the first automated system to enter a game jam (Cook and
Colton 2014). Other important projects which address game
generation include early work of Nelson and Mateas on gen-
erating games in the style of Nintendo’s WarioWare series
(Nelson and Mateas 2007). The Game-O-Matic project2 en-
ables people to automatically generate short, simple games
by defining relationships, as described in (Treanor et al.
2012), and an approach to puzzle generation with simulated
physics models was investigated in (Shaker et al. 2013).
Further aspects of AI for game design are discussed in (Riedl
and Zook 2013). Taking a higher level view, Liapis, Yan-
nakakis, and Togelius (2014) describe the mutual benefits
for Computational Creativity research with application to
video game design.

This paper is structured as follows. First we describe
how games are specified in the TekaTekiTech system, and
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how a specification translates to a playable game. Next we
give some illustrative examples of games generated by the
system, in two categories: first, abstract games designed
with minimal human input; second, games where a human
designer intervened to create games with meaning. Next
we frame the TekaTekiTech system in the wider context
of Computational Creativity, discussing our goals for the
project in both scientific and philosophical terms. Finally
we outline future work on the project.

The TekaTekiTech system

The system has two GUI components: an interface for de-
signing games, and an interface for playing them. See Fig-
ure 1. A game in the system is defined by a set of el-
ements such as: input event handlers; collision detectors
and handlers; object spawners, movers and killers; game
progress trackers and displayers; and theme managers for
graphical and audio assets. Many of the element types
take parameters. Figure 1 (a) shows an example of a game
element being edited in the designer GUI. The element
is of type NumPiecesDraggedProgressMechanism,
and takes two integer parameters: failurePenalty and
maxNumPiecesDragged. This element implements a
game mechanic where at most maxNumPiecesDragged
can be touched in one game: if more than this number of
pieces are touched, the player loses failurePenalty

points.
TekaTekiTech currently defines a large library of element

types, each of which is a Java class; the system can easily be
extended by adding more element types. The elements are
building blocks of middling complexity, more complex than
e.g. arithmetic operators but less complex than e.g. move-
ment controllers for game characters. Excluding boilerplate
code, the behaviour of a single element is defined by 5–20
lines of code on average. In this way TekaTekiTech has su-
perficial similarities with PyVGDL (Schaul 2014), but there
are also many differences in design. PyVGDL is intended as
a human-readable game specification language for AI com-
petitions, and includes some high-level constructs to this
end; in TekaTekiTech the emphasis is much more on auto-
mated generation and mutation of games, which would only
be made more difficult by adding complexity to the specifi-
cation system.

All element types implement a respondToTick

method, which is called once per game update for every cur-
rently active element in sequence. There is also a shared
pool of events, and elements may add or remove events from
the pool. For example one element may add information on
a collision event to the pool, and another element may then
handle the event. Certain elements can also modify the list
of active game elements whilst the game is in progress.

The game definition itself is simply a list of element types
and parameters. The game specification is a flat list of ele-
ments. (The hierarchy shown in Figure 1 (a) reflects the hi-
erarchy of Java packages defining the element types, and is
provided for user convenience; the underlying data structure
being edited is flat.) This flat structure is in contrast to some
other game description languages where the specification is
a hierarchy of elements (Schaul 2014) or a program in a

declarative programming language (Love et al. 2006). This
makes it easy to generate TekaTekiTech games at random or
by simple evolutionary approaches, for instance. The cur-
rent version of the editor GUI allows elements to be added
and deleted, and their parameters to be adjusted by sliders.
Once the game has been edited, it can be played with a single
menu command or shortcut key, allowing rapid iteration of
editing and testing. This simple interface is enough to allow
simple editing of random games, and even design of games
from scratch. It is easy to envisage how more advanced edit-
ing tools could be provided to allow for local search, bet-
ter parameter visualisations etc. This is a subject for future
work.

At the beginning of the game, elements are instantiated
according to the specification. On each frame of the game,
all elements are updated. Gameplay emerges from com-
plex interactions between the components. It is important
to make a distinction between game elements and on-screen
game objects: elements manage various aspects of game-
play, which may include the creation, update and deletion of
on-screen objects, but elements are not themselves objects
in the game world.

We now describe some of the games currently imple-
mented in the system. These games were designed by a
(very simple) creative agent in collaboration with a human
designer: the games were initially generated randomly, be-
fore being curated, tweaked and themed by hand. Only mi-
nor tweaks were made to the games to make them more
playable, for example adjusting the numbers or movement
speeds of pieces to tune the difficulty (some generated
games were far too difficult, others were far too easy). Im-
portantly, no changes were made that substantially changed
the core mechanics of the games.

Abstract games

The first phase of development focussed on abstract games,
where the on-screen objects are simple circles and rectan-
gles. All of the abstract games use the same basic on-screen
objects: a rectangular board split into cells, and a number of
circular pieces. In abstract game 6 (Figure 2 (a)), the board
rotates counterclockwise whilst the pieces orbit clockwise.
When a piece is clicked, all pieces which overlap the board
stick to the board. The aim of the game is to make six pieces
stick to the board. However if a piece is moved by drag-
ging, all unstuck pieces shrink to nothing; also, if the player
touches more than one piece, the game is lost. One strategy
for the game is to observe that the pieces sometimes overlap
the corners of the board as they orbit; when this happens,
click and release any piece. As long as the same piece is
clicked every time, this leads to a win.

In abstract game 7 (Figure 2 (b)), the board rotates and
the pieces move in straight lines in random directions. When
pieces collide, they change directions at random. When a
piece is clicked, it stops moving. The aim is to get 10 pieces
onto the board, however the game ends in a loss if any piece
moves off the screen. Despite its simplicity, this game is
very challenging. One strategy operates in two phases: first,
rapidly click many pieces to create a barrier around the edge
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Figure 1: Screenshots of the TekaTekiTech system, working with the game Too Many Michaels. (a) The game designer GUI.
(b) The gameplay GUI.

of the screen; second, engineer collisions between pieces un-
til enough of them overlap the board. It took many hours of
play to discover this strategy; other strategies exist, but are
even more difficult to find.

In TekaTekiTech, most games use a random number gen-
erator for initial placement of pieces. However the seed for
the generator is fixed, so the placement is the same every
time the game is played. This allows the player to learn
the placements of pieces over multiple plays of the game,
and develop a strategy accordingly. It may be the case that
some games are only solvable under certain random seeds.
For example, abstract game 6 is winnable because the initial
placements ensure that every piece passes over a corner of
the board at some point in the game. A different seed may
not have this property, and so would render the game unsolv-
able. It would be possible for an observant player to notice
this and hence prove that the game cannot be won.

Games with meaning

The second phase of development was to move beyond ab-
stract games and towards games with meaning. “Meaning”
in this context is achieved by adding graphical assets for the
on-screen objects and background in a way that, when com-
bined with the mechanics of the game, tells some kind of
story.

Too Many Michaels features a number of static lightbulb
sprites (representing ideas) and a number of Michael sprites
moving in circles centred in the middle of the screen. The
player can move a lightbulb by dragging, and use this light-
bulb to push the other bulbs around. The aim is to ensure
that, when the dragged lightbulb is released, one and only
one lightbulb sprite is overlapping a Michael sprite. In other
words, the aim is to ensure that Michael gets only one idea,

rather than a larger overwhelming number of them. See Fig-
ure 1 (b).

In Let It Snow, blue circles orbit the middle of the screen
whilst snowflakes fall in the background. The score in-
creases whenever a snowflake appears, and the game ends
once a target score is reached. See Figure 2 (c). Dragging a
snowflake causes all snowflakes on the screen to shrink and
disappear. Hence the best strategy for this game is simply
to “let it snow”, i.e. to watch the game play out without in-
teracting. Of course this is not spelled out to the player, so
realising this becomes a game objective in itself.

Discussion

Our aims for the TekaTekiTech systems are numerous.
Firstly, we are interested in automated programming as a
methodology for the building of creative systems. Ap-
proaches where software writes software, or re-writes its
own code, have a number of advantages, not least with re-
spect to projecting autonomy onto software from a public
understanding perspective. That is, it is fair criticism to say
that software is only an extension of the person/team who
wrote it, therefore any interesting behaviour which may re-
semble creativity that the software might exhibit can be at-
tributed to the author. This point of view is fairly common-
place because software is programmed directly by a person,
and there is a general lack of understanding that AI tech-
niques such as machine learning and evolutionary program-
ming generate and alter code indirectly, hence not explic-
itly instructed by a programmer. By talking about auto-
mated software writing projects, where software writes and
re-writes its own code or that of other programs, we believe
that it would be more difficult for people to argue that the
original programmer — who is now one step removed —
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Figure 2: Screenshots from (a) abstract game 6; (b) abstract game 7; (c) Let It Snow.

should gain credit for the behaviours of the software. With
the project here, we are interested in adding to the usual
set of automated programming techniques such as machine
learning and evolutionary approaches, as previously men-
tioned.

Another aim for the TekaTekiTech program is to use the
output games and the fact that they were automatically gen-
erated as a vehicle with which to explore an analogy between
puzzle/problem solving in an entertainment setting and in a
pure mathematics research setting. When playing a com-
mercially produced casual puzzle game, there is a certain in-
evitability in the solving of each puzzle presented. Even if a
game level/puzzle is very difficult, players tend to know that
it is worth persevering, as it would be largely unthinkable
that an unsolvable puzzle had entered into the game. Notable
exceptions to this are games with a randomised generative
element, such as card games like FreeCell Solitaire (Heine-
man 2009) and numerical games like the CountDown Num-
bers Game (Colton 2014), where the random shuffle of cards
or generation of numbers can lead to an unsolvable puzzle.
These are very much exceptions to the rule in commercial
puzzle gaming, and it would likely be seen as a bug in a
game if an unsolvable level was shipped with the game. The
same is true of certain types of mathematical problems in
educational and research settings. Imagine, for instance, a
maths problem in an exam which was not solvable — there
would be outrage amongst the students that they were forced
to waste valuable time on such a question. The same is true
for mathematical tutorial questions, but it is emphatically not
true about problems arising in pure mathematics research.

In such a setting, open conjectures come with the caveat
that what is thought to be a truth about a mathematical object
such as a number, graph or group, could actually be com-
pletely untrue. For instance, the rock of Fermat’s Last Theo-

rem (Singh 1997) against which thousands of mathemati-
cians before Andrew Wiles crashed could definitely have
been false, and a counterexample could have been found
with more powerful calculations. Indeed, there have been
several cases where a famous centuries-old conjecture was
unexpectedly disproved by the discovery of a counterexam-
ple3. When working on such open problems, it is common-
place to switch between finding a proof and finding a coun-
terexample, and such doubt adds to the difficulty, but also
the enjoyment of research-level pure mathematics, i.e., per-
severance in the light of potential failure is richly rewarded
with high satisfaction in success and bitterly digested when
an open conjecture becomes a false theorem. Of course, with
open conjectures, the rich rewards are not just attributed to
personal satisfaction related to coming through adversity. In
addition, open problems are by definition not known to be
true or false by any other human being. Hence, by being the
first to prove or disprove an open conjecture, a certain no-
toriety and satisfaction is gained at being the first to know
some new — and in certain cases important — fact about
the world.

In general, puzzle solving in a ludic, entertainment set-
ting has much in common with mathematics problems in
an educational setting, but is missing the two elements vital
in the enjoyment of research mathematics, namely the ten-
sion between not knowing whether something is true/false
(in the gaming analogy: a level being solvable/unsolvable)
and being the first person in the world to know something
(in the gaming analogy: being the first to complete a level).
As many of the mini-games produced by TekaTekiTech are
unsolvable, but neither the software nor any person knows

3
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this in advance of playing, and as the game space is so huge
that it’s unlikely that a randomly sampled game would be
given to two people simultaneously, we have the opportu-
nity to see whether the joys of pure mathematics research
transfer over to that of mini-game playing. Within this con-
text, and of particular importance for Computational Cre-
ativity, we would like to test the hypothesis that human-free
generation of such puzzles adds to the enjoyment. There is
a long-standing debate in the philosophy between human-
ists and Platonists, whereby the former point out that math-
ematical results come from human minds and are therefore
inventions like the vacuum cleaner, but with the latter indi-
cating that certain mathematical concepts and results such
as prime numbers are clearly universal, and are merely dis-
covered by people, like Columbus discovered the Ameri-
can continent. Software generating puzzles seems somehow
more akin to the Platonic view, and so a person solving such
puzzles might gain the joy of discovering something new.
On the other hand, if a person wrote a mini-game, we might
argue that it is their responsibility to determine whether it is
solvable or not, and not engage with it. This is a subtle point
that we hope to explore with further philosophical thought
and experimentally.

One difference between mathematical problems and
TekaTekiTech games is that the former can be solved with
pure mental effort, whilst the latter also require some de-
gree of physical skill to achieve a solution. In some puzzles
it may be easy to see what must be done, but difficult to
make the precise inputs required. The constraints are often
soft. Such puzzles are less like pure mathematics and more
like research in the physical sciences. Adapting the anal-
ogy, the difference between playing a designed game and a
discovered game is akin to the difference between reproduc-
ing a set experiment as a student and devising an entirely
new experiment as a researcher. Both require skilful use of
apparatus as well as mental skill, but only the latter carries
the uncertainty of trying something that may be impossible
and the potential satisfaction of succeeding where no-one
has before.

A third aim for this work is to explore further the notion
of discovering game mechanics as a meta-level game me-
chanic. Each new game presents a new set of rules, so that
the player cannot know how to play a game — part of the
enjoyment comes from figuring out the rules of the game.
This presents a unique challenge, which can be fun and frus-
trating in equal measure. Discovery of game mechanics as
a game mechanic in itself is a feature of some indie games
such as Antichamber and The Binding of Isaac. However
where it often manifests simply as a deliberate lack of tutori-
als and hand-holding in a game with many other mechanics,
we intend to push TekaTekiTech as a meta-game in which
the main meta-mechanic is the discovery of game mechan-
ics. This raises the question of how mechanic discovery can
be encouraged beyond simply withholding information from
players, e.g. whether certain mechanics are more or less dis-
coverable than others.

Future work

Good game design is a feedback loop: all human game de-
signers know the vital importance of prototyping, playtest-
ing and refinement. To truly automate the game design
process, it is necessary to automate playtesting. Playtest-
ing in TekaTekiTech can be considered an instance of gen-
eral videogame playing, as the playing agent cannot be pro-
grammed in advance with knowledge of the game. It is also
desirable to be able to playtest and iterate rapidly, so play-
ing techniques such as deep reinforcement learning (Mnih
et al. 2015), which require extensive training to achieve
strong play, are not suitable. State-of-the-art techniques for
general game playing without offline learning tend to be
based on Monte Carlo Tree Search (MCTS) (Browne et al.
2012). In videogames, where a decision is required once
per game tick (as opposed to turn-based games where deci-
sions are allowed to take several seconds), MCTS is often
augmented with macro-actions (Powley, Whitehouse, and
Cowling 2012) and/or open loop search (Perez et al. 2015).
We will use these and other techniques to create an agent
that can play TekaTekiTech games competently. The aim
is not necessarily to create a world-champion level player,
merely one that is smart enough to recognise when a game
is too easy. The most interesting games may turn out to be
the ones which the AI agent can almost, but not quite, solve;
and informing the player of this may add an enjoyable ele-
ment of human-versus-machine competition.

Let It Snow, described above, is an example of a “game”
which on the surface looks rather uninteresting, but becomes
interesting with suitable interpretation and the added game-
play dimension of mechanic discovery. In the context of
the curated collection of games we have assembled so far, it
is interesting because it is unusual. However in the search
space this type of game is relatively common. Indeed there
are abundant examples of even less playable games, for ex-
ample those where the player instantly wins or loses. It is
necessary, and fairly easy, to detect and filter such games.

Despite the rich history of metaprogramming in computer
science, automated code generation remains relatively un-
charted territory in computational creativity. TekaTekiTech
is engineered from the start with automated programming
in mind. While approaches such as that in the Mechanic
Miner sub-system (Cook et al. 2013) uses direct code ma-
nipulation for very similar aims to ours, namely game me-
chanic generation, the ANGELINA system which this forms
part of has not been developed specifically with automated
programming in mind. By splitting games into 43 distinct
elements which can be instantiated in numerous ways, pa-
rameterised and chained together for combinatorial com-
plexity, we have reduced the amount of operational code in
the elements to on average a small number of lines of code
(around 5–20). This means that the code is now eminently
amenable to automated programming, and our first attempt
at this will be a cut, paste, tweak and compile approach. That
is, TekaTekiTech will take its existing code for a particular
instantiation of a particular game element, copy and paste it
as a new instantiation and then perform rudimentary alter-
ations, attempting compilation and trying out the new ele-
ment in existing games, testing for any differences in game-



play that arise. Because the operational code is so small, the
dependencies of alterations can be somewhat predicted in
advance, and the code alteration can be more carefully con-
trolled. If, for instance, a piece of copied/pasted/tweaked
code was hundreds of lines long, there are more likely to
be butterfly effects, where small changes in the code make
for large changes in the gameplay. In future work, we plan
to test the efficacy of numerous automated code generation
techniques.

We have anecdotal evidence that the system generates
compelling games. We will use a framework such as cu-
ration analysis (Colton and Wiggins 2012) to assess the ef-
fectiveness of the system. Whilst TekaTekiTech is a promis-
ing vehicle for exploring the above mentioned scientific and
philosophical issues, our ultimate aim is to bring it to mar-
ket as a commercial game for mobile devices. Puzzle games
are popular on such devices, so a product which promises
a practically infinite variety of such games should be ex-
tremely compelling. We hope that players’ discovery and
possibly co-designing of new games will promote a strong
sense of creative ownership, and we will give players a way
to share games on social media, for example to challenge
their friends to solve a particularly difficult game. Games in
which players are left to discover the mechanics often breed
the strongest communities, with some players spending as
much time discussing and cataloguing the game on forums
and wikis as they spend playing it. We hope and believe
that TekaTekiTech has the potential to inspire this kind of
dedication amongst players.
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