

Determinization in Monte-Carlo Tree Search for the card

game Dou Di Zhu

Edward Powley1, Daniel Whitehouse1, and Peter Cowling1

Abstract. Monte-Carlo Tree Search (MCTS) is a class of game tree
search algorithms that have recently proven successful for
deterministic games of perfect information, particularly the game of
Go. Determinization is an AI technique for making decisions in
stochastic games of imperfect information by analysing several
instances of the equivalent deterministic game of perfect
information. In this paper we combine determinization techniques
with MCTS for the popular Chinese card game Dou Di Zhu. In
determinized MCTS, there is a trade-off between the number of
determinizations searched and the time spent searching each one;
however, we show that this trade-off does not significantly affect
the performance of determinized MCTS, as long as both quantities
are sufficiently large. We also show that the ability to see
opponents’ hidden cards in Dou Di Zhu is a significant advantage,
which suggests that inference techniques could potentially lead to
much stronger play.1

1 INTRODUCTION

From the inception of the field of game AI until relatively recently,
the vast majority of research has focussed on games that are
deterministic (do not have chance events) and have perfect
information (all players can observe the exact state of the game).
Chess [1] and checkers [2] are two well-known and well-studied
examples of such games.

One recent innovation in AI for deterministic games of perfect
information is Monte-Carlo Tree Search (MCTS). MCTS iteratively
builds a partial search tree, using random simulated games to
evaluate nonterminal states. This makes it well-suited to games with
long trajectories and high branching factor, as well as games where
good heuristic state evaluation functions are difficult to find. The
game of Go exemplifies both of these properties; MCTS has proven
particularly successful for Go [3], and it is this success that has
fuelled much recent interest in MCTS.

Work on AI for games that are stochastic (have chance events)
or have imperfect information (the state of the game is only partially
observable) is comparatively recent. One popular approach to such
games is determinization. The game is reduced to several instances
of a deterministic game of perfect information (called
determinizations), by randomly fixing the values of future chance
events and hidden information. Each of these determinizations is
analysed by AI techniques for deterministic games of perfect
information and the results are combined to yield a decision for the
original game. Although it is not a fool-proof approach for all

1
Artificial Intelligence Research Centre, School of Computing, Informatics

and Media, University of Bradford, UK. Email: {e.powley,
d.whitehouse1, p.i.cowling}@bradford.ac.uk.

games, determinization has proven successful in games such as
bridge [4] and Klondike solitaire [5], as well as the domain of
probabilistic planning [6].

There is an important trade-off to be made in determinization,
between the number of determinizations, and the amount of effort
spent on analysing each one. However, in this paper we present
experimental results suggesting that this trade-off is not as
important as it may appear at first: as long as both parameters are
sufficiently large, adjusting the balance between them does not have
a significant effect on playing strength.

It is common in games of imperfect information for certain
pieces of information to be visible to some players but hidden from
others. An important technique in such games is the ability to infer
this information by observing the actions of other players. An upper
bound can be placed on the performance gain that can be achieved
by inference by measuring the performance of a player able to
observe the exact state of the game, effectively modelling a player
who is able to instantly and perfectly infer any hidden information.
Using this method, we show that the potential benefit of inference is
significant: if two cooperating players can observe the hidden
information belonging to each other and to their opponent, then they
can improve their win rate by around 21%.

The structure of this paper is as follows. Section 2 reviews
existing work on MCTS and on AI for stochastic games of
imperfect information. Section 3 introduces the card game Dou Di
Zhu, which serves as our application domain for the remainder of
this paper. Section 0 describes the version of determinized MCTS
we use, and addresses some technical issues of how this is applied
to Dou Di Zhu. Section 5 presents experimental results, including
measurement of the variance in win rates for Dou Di Zhu (Section
5.1), the trade-off between number of determinizations and number
of MCTS iterations per determinization (Section 5.2), and the
potential increase in playing strength obtainable through inference
of hidden information (Section 5.3). Finally, Section 6 gives some
concluding remarks and directions for future work.

2 LITERATURE REVIEW AND BACKGROUND

2.1 Preliminaries

This section introduces briefly the notions of uncertainty
(stochasticity and/or imperfect information) in games. For more
details we refer the reader to a standard textbook on game theory,
e.g. [7].

A game can be thought of as a multi-agent Markov decision
process; that is, a Markov process where, at each state, one of the
agents (or players) is allowed to make a decision which influences

the transition to the next state. A game is said to be deterministic if
taking a particular action from a given state always leads to the
same state transition. If a game is not deterministic, i.e. there is
some element of randomness (or chance) to the transitions, the
game is said to be stochastic. A game has perfect information if all
players are able to observe the current state of the game. If a game
does not have perfect information, i.e. the underlying Markov
process is partially observable, the game is said to have imperfect
information. For example, many card games are stochastic (because
they are played with a shuffled deck) with imperfect information
(because no player is able to observe the cards held by the other
players). Where there are stochastic state transitions, we may also
regard this as a deterministic game where chance outcomes (e.g. the
order of cards in a shuffled deck) are decided in advance, but are
hidden from all players. This way of thinking gives rise to the
determinization approach we will discuss later.

In a game of imperfect information, the states as observed by
each player are partitioned into information sets, where an
information set is defined as a set of states that are indistinguishable
from the player’s point of view. During the game, the player cannot
observe the current state, but can observe the current information
set.

2.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a class of game tree search
algorithms that make use of simulated games to evaluate non-
terminal states. Simulated games select random actions until a
terminal state is reached and the reward is averaged over multiple
simulations to estimate the strength of each action. MCTS
algorithms have gained in popularity in recent years due to their
success in the field of computer Go [3]. In particular the UCT
algorithm [8] proposed in 2006 has led to the recent upsurge of
interest in MCTS algorithms. UCT enables a selective search to be
performed where only the most promising areas of the tree are
searched. This is particularly useful in domains with a large
branching factor.

MCTS algorithms build a sub-tree of the entire decision tree
where usually one new node is added after every simulation. Each
node stores estimates of the rewards obtained by selecting each
action and an improved estimate is available after every simulation
step. In the case of the UCT algorithm, each decision in the tree is
treated as a Multi-Armed Bandit problem where the arms are
actions, and the rewards are the results of performing a Monte-
Carlo simulation after selecting that action. The UCB algorithm [9]
is used to guide the selection of actions at each decision in the tree.
The UCB algorithm ensures that the tree will be selectively
explored, performing a deeper search in more promising areas of
the tree.

There has been some research on modifying UCT to achieve
better performance for particular domains (such as Go), with the
RAVE heuristic [10] being an example of such a modification. Also
the algorithm can be executed in parallel [11] allowing MCTS
agents to exploit modern multi-core and multi-processor hardware.
UCT has been successfully applied to a wide variety of challenging
domains such as General Game Playing [12], where the rules of the
game are not known in advance and an AI player must use a very
general approach which does not depend upon specific game
knowledge. UCT requires very little domain knowledge and is
therefore useful in domains where no good heuristics are known.

The structure of MCTS algorithms is generally quite similar: a
discrete number of iterations are performed, after which an action
from the root node is selected according to statistics collected about

each action. Each simulation step performs four operations on the
sub-tree built by the algorithm, namely Selection, Expansion,
Simulation and Back-Propagation.

2.2.1 Selection

Starting from the root node, an action is selected at each node in the
current partial game tree, according to some criterion. This
mechanism is applied iteratively until it reaches either a terminal
game state or a node which is not in the current partial game tree.

In the case of the UCT algorithm the mechanism used for
traversing the tree is the UCB algorithm. After initially selecting
every action once, the UCB algorithm selects the action which
maximizes

 ∑ ��,���()����(�) + ��ln(�)�(�) (1)

where ��,� denotes the reward obtained by selecting arm � on trial �, � is the number of times the current node has been visited
previously, �(�) is the number of these visits in which action � was
selected, and � is a constant controlling the balance between
exploration and exploitation (often � = √2). The UCB algorithm
balances exploration of untried moves with exploitation of known
good moves. This enables UCT to find the most promising areas of
the tree and search these further.

2.2.2 Expansion

If the state reached is terminal then there is no need to expand the
tree or perform a simulation and the final result of the game is
Back-Propagated. If the state is not terminal then it is added to the
tree.

2.2.3 Simulation

Starting from the node added in the expansion phase (or the selected
leaf node if no node was added), the game is played out to
completion by choosing random moves for each player. The result
of this simulated game is then used to update the statistics in the
tree during Back-Propagation. Choosing an effective method for
quickly selecting random moves which give rise to unbiased game
simulations, and which are also realistic enough to be strongly
correlated with the eventual winner from a position, appears crucial
to strong play in MCTS, particularly for computer Go [13].

2.2.4 Back-Propagation

Each node visited during selection has its statistics updated. In the
case of the UCT algorithm the number of times the node has been
visited and the cumulative reward of simulations passing through
that node (from the point of view of the player selecting the action
at the node) are recorded. These are then used in turn by the UCB
algorithm during the next selection phase.

2.3 AI for games with uncertainty

This section briefly surveys research on AI for games with
stochasticity and/or imperfect information.

2.3.1 Determinization

One approach to designing AI for games with stochasticity and/or
imperfect information is determinization, also known as perfect
information Monte Carlo (PIMC). For an instance of a stochastic
game with imperfect information, a determinization is an instance
of the equivalent deterministic game of perfect information, in
which the current state is chosen from the AI agent’s current
information set, and the outcomes of all future chance events are
fixed and known. For example, a determinization of a card game is
an instance of the game where all players’ cards, and the shuffled
deck, are visible to all players. We then create several
determinizations from the current game state, analyse each one
using AI techniques for deterministic games of perfect information,
and combine these decisions to yield a decision for the original
game.

Ginsberg’s GIB system [4] applies determinization to create an
AI player for the card game Bridge which plays at the level of
human experts. GIB begins by sampling a set � of card deals
consistent with the current state of the game. (The question of how � is sampled is rather more subtle than it first appears, and indeed
Ginsberg [4] does not give complete details). For each of these
deals � ∈ � and for each available action �, the perfect information
(“double dummy”) game is searched to find the score �(�, �)
resulting from playing action � in determinization �. The search
uses a highly optimised exhaustive search of the double dummy
Bridge game tree. Finally, GIB chooses the action for which the
sum ∑ �(�, �)�∈� is maximal.

A domain closely related to (single-player) stochastic games of
imperfect information is that of probabilistic planning. Yoon et al’s
FF-Replan [6] and FF-Hindsight [14] systems apply determinization
to probabilistic planning problems. Despite the simplicity of its
approach, FF-Replan outperformed more complex systems to win
the IPPC-04 and perform well in the IPPC-06 probabilistic planning
competitions.

Bjarnason et al [5] present a variant of UCT for stochastic
games, called Sparse UCT and apply it to the single-player card
game of Klondike Solitaire. In a stochastic game, a single state-
action pair can lead to multiple successor states (corresponding to
the possible outcomes of the chance event); Sparse UCT handles
this by allowing multiple child nodes for each action from each
state. The selection phase selects actions using UCB, but the
traversal to child nodes is stochastic, as is the addition of child
nodes during expansion. Sparse UCT imposes an upper limit on
the number of child nodes for each state-action pair.

Bjarnason et al [5] also study an ensemble version of Sparse
UCT, in which several search trees are constructed independently
and their results (the expected rewards of actions at the root) are
averaged. They find that ensemble variants of UCT often produce
better results in less time than their single-tree counterparts. The
ensemble case with = 1, which Bjarnason et al call HOP-UCT, is
equivalent to a straightforward application of determinization (more
specifically, hindsight optimisation [15]) with UCT as deterministic
solver, in which the determinization is constructed lazily as UCT
encounters each chance event.

Bjarnason et al [5] treat Klondike Solitaire as a stochastic game
of perfect information: rather than being fixed from the start of the
game, the values of face down cards are determined as chance
events at the moment they are revealed. This works for single-
player games where the hidden information does not influence the
game until it is revealed, but generally does not work for
multiplayer games where the hidden information influences the
other players’ available and chosen actions from the beginning of
the game. Hence the specific methods of Sparse UCT and lazy

determinization are not immediately applicable to multiplayer
games, but the general ideas are transferable.

Bjarnason et al show that Sparse UCT is able to win around 35%
of Klondike Solitaire games, which more than doubles the estimated
win rate for human players. Determinized MCTS also shows
promise in games such as Phantom Go [16] and Phantom Chess
(Kriegspiel) [17], among others.

Despite these successes, determinization is not without its critics.
Russell and Norvig [18] describe it (somewhat dismissively) as
“averaging over clairvoyance”. They point out that determinization
will never choose to make an information gathering play (i.e. a play
that causes an opponent to reveal some hidden information) nor will
it make an information hiding play (i.e. a play that avoids revealing
some of the agent’s hidden information to an opponent). Ginsberg
[4] adds weight to this claim by making the same observations
about GIB specifically. One explanation for this is that, from the
point of view of the decision-making process in each
determinization, there is no hidden information to gather or hide.

Russell and Norvig’s criticisms of determinization are valid but
equally valid are the experimental successes of determinization.
Frank and Basin [19] identify two key problems with
determinization:

1. Strategy fusion. An AI agent can obviously not make different
decisions from different states in the same information set
(since, by definition, it cannot distinguish such states);
however, the deterministic solvers can and do make different
decisions in different determinizations.

2. Non-locality. Some determinizations may be vanishingly
unlikely (rendering their solutions irrelevant to the overall
decision process) due to the other players’ abilities to direct
play away from the corresponding states.

Building on the work of Frank and Basin, Long et al [20]
identify three parameters of game trees and show that the
effectiveness of determinization has some dependence on the
game’s position in this parameter space. The parameters measure
the ability of a player to influence the outcome of a game in its late
stages (leaf correlation), the bias in the game towards a particular
player (bias) and the rate at which hidden information is revealed
(disambiguation). Long et al [20] demonstrate how these
parameters can be used to predict whether determinization is an
appropriate method for a given game.

2.3.2 Other approaches

One alternative approach to tree search for stochastic games is
expectimax search [18]. This is a modification of the well-known
minimax algorithm to game trees containing chance nodes. The
value of a chance node is the expected value of a randomly chosen
child (i.e. the sum of the values of its children weighted by the
probabilities of the corresponding chance outcomes). Unfortunately,
expectimax is not well-suited to the type of card games studied in
this paper, where there is a single chance node with a very large
branching factor (corresponding to the initial shuffling of the deck),
as the resulting game tree is too large to search even with MCTS.

As noted previously, the field of game AI focussed on
deterministic games of perfect information until relatively recently.
The same is not true in the field of game theory, where stochastic
games of imperfect information have been well studied [7]. Thus a
popular approach to AI for such games is to compute (or
approximate) a Nash equilibrium strategy; examples of this
approach include Gala [21] and counterfactual regret [22]. While
there is undeniable appeal in finding a strategy that is provably
optimal, we feel that searching for Nash equilibria is often not the

most appropriate approach to building strong game AI. The
definition of Nash equilibrium requires only that the strategy is
optimal against other optimal (Nash) strategies, so Nash strategies
often fail to fully exploit suboptimal opponents.

2.3.3 Inference

In games of imperfect information, it is often possible to infer
hidden information by observing the actions of the other players,
according to some model of the other players’ decision processes.
This type of inference has frequently been applied to the game of
poker [23-25], but also to other games such as Scrabble [26] and the
card game Skat [27] which has similarities to the card game Dou Di
Zhu which we study in this paper. Developing an inference engine
for Dou Di Zhu is a subject of current and future work. Section 5.3
discusses the increase in playing strength we expect to see from a
strong inference engine.

3 DOU DI ZHU

3.1 History and Popularity of Dou Di Zhu

Dou Di Zhu [28] is a 3-player gambling card game which originated
in China. It falls into the class of Climbing Games but also has
similar elements to Trick Taking Games. The name Dou Di Zhu
translates into English as “Fight The Landlord” and is a reference to
the class struggle during the Cultural Revolution in China where
peasants were authorized to violate the human rights of their
Landlords. In the original version of the game two players play
compete together against a third player, the Landlord. There are
other versions of the game involving four and five players but these
are less popular.

The game was only played in a few regions of China until quite
recently, when versions of the game on the Internet have led to an
increase in the popularity of the game throughout the whole
country. Today Dou Di Zhu is played by millions of people online,
although almost exclusively in China, with one website reporting
1,450,000 players per hour. In addition there have been several
major Dou Di Zhu tournaments including one in 2008 which
attracted 200,000 players.Dou Di Zhu is interesting from an AI
perspective as it necessitates both competition (between the
Landlord and the other two players) and cooperation (between the
two non-Landlord players).

3.2 Rules

Dou Di Zhu2 uses a standard 52 card deck with the addition of a
black joker and a red joker. Suit is irrelevant but the cards are
ranked with 3 being the lowest rank and 2 being the highest rank
(higher than Ace). The jokers are ranked higher than a two, with the
red joker ranked higher than the black joker. Each player is dealt a
hand of 17 cards from a shuffled deck and the remaining three cards
are placed faced down on the table.

3.2.1 Bidding Phase

Each player takes turns to bid on their hand with the possible bids
being 1, 2 or 3 chips. Bids must be strictly higher than the current
bid but each player has the option to pass. This continues until two
of the players pass consecutively. If any player bids 3 chips then the

2 There are different versions of the rules of Dou Di Zhu. The rules used

in this work were taken from [28].

bidding phase immediately ends. If all three players initially pass,
the cards are shuffled and dealt again. The winner of the bidding
phase is designated as the Landlord and this player adds the three
extra cards on the table into their hand, and plays first. The winning
bid determines the stake for the game.

3.2.2 Card Play Phase

The goal of the game is to be the first to get rid of all cards in hand.
If the Landlord wins, the other two players must each pay the stake
to the Landlord. However if either of the other two players wins, the
Landlord pays the stake to both opponents. This means the two non-
Landlord players must cooperate to beat the Landlord. The
Landlord always plays first and then play moves around the table in
a fixed direction. At the end of the game the stake is doubled if a
player has failed to remove any cards from their hand.

The card play takes place in a number of rounds until a player
has no cards left. Whoever plays first can play any group of cards
from their hand provided this group is a member of one of the legal
move categories (see Table 1). The next player can play a group of
cards from their hand provided this group is in the same category
and has a higher rank than the group played by the previous player.
If a player has no compatible group they must pass. This continues
until two players pass, at which point the next player wins that
round and may start a new round by playing a group of cards from
any category.

There are a few special rules for some of the categories. If the
move being played is a straight run (of singles, pairs or trios) then
the next player must play a straight run of the same type and length,
ending on a higher ranked card. Straight runs can contain cards of
any rank from 3 to Ace, but not cards of rank 2 or jokers. A Bomb
or a Nuke (also known as a Rocket) may be played at any point but
doubles the stake of the game. A Bomb may be followed by another
Bomb of higher rank but not a Quadplex.

Some categories allow extra kicker cards to be played with the
group which have no effect on the category or rank of the move
being played. A kicker can be any card provided it is of different
rank to all the cards in the main group. If the kicker cards are single
cards they must be of different rank and if the kicker cards are pairs
they must be differently ranked pairs. Also a Nuke cannot be used
as a kicker. If a move with kickers is played, the next player must
play a move in the same category with the same number of kickers,
although the ranks of the kicker cards are ignored.

Table 1 summarises the categories of moves in Dou Di Zhu.

Table 1. Description of the different move categories in Dou Di Zhu

Name Description
Solo Any individual card, for example A or 2. It is also possible to

play runs of sequential cards with length at least 5, for
example 345678 or 89TJQKA.

Pair Any pair of identically ranked cards for example 55 or 77. It
is possible to play runs of sequential pairs with length at least
3, for example 334455 or TTJJQQKK.

Trio Any three identically ranked cards for example AAA or 888.
It is possible to play runs of sequential trios of any length, for
example 444555 or TTTJJJQQQ. Each trio may also have a
kicker attached, for example 444555TJ or 999QQ.

Quadplex Any four identically ranked cards with two kickers attached,
for examples 4444TJ or 999955KK.

Bomb Any four identically ranked cards, for example 5555 or 2222.
Nuke The red joker and the black joker together.

3.3 Basic Strategy

Dou Di Zhu is a game which requires substantial levels of skill from
expert human players. The player who wins the bidding phase
usually has a high confidence they were dealt a good hand although
they have three extra cards to discard. Often a hand contains lower
ranked individual cards that cannot form part of a bigger group and
it is possible to play these by using them as kicker cards. In general
most plays should reduce the number of moves needed to get rid of
all cards. Bombs and Nukes are powerful since they can be played
at any point, but they double the stake of the game. For this reason
playing them early in the game is risky.

Starting a new category is a good position to be in, allowing a
player to choose a category where he holds multiple groups, or
holds a high-ranking group that opponents are unlikely to be able to
play on. Hence inference is an important aspect of Dou Di Zhu
especially concerning the location of the high ranked cards in
opponents’ hands. The two non-landlord players also need to work
together since they either both win or both lose. This can be
achieved by making plays that allow the other non-Landlord player
to play cards or prevent the Landlord from making further plays.

4 METHODOLOGY

In order to focus only on the card play phase, it is possible to
remove the bidding phase and designate that an arbitrarily chosen
player gets the extra cards and is the Landlord.

4.1 Perfect Information Dou Di Zhu

It is possible to modify Dou Di Zhu to be a game of perfect
information by playing with all cards face up at all times. This
removes the need to make inferences about other player’s cards and
allows the exact consequences of every action to be studied when
searching the game tree. This version of the game we call Perfect
Information Dou Di Zhu.

In order to compare the results of playing multiple games of Dou
Di Zhu, we count numbers of wins instead of cumulative rewards,
ignoring the effects of player bidding and bombs/nukes. We award
a player 1 point for winning a dealt hand and 0 points for a loss.
Since the UCB algorithm has been well studied with rewards in {0,1} we can benefit from the work of others in setting the
parameter � which trades off exploration and exploitation in the
UCB formula (1).

4.2 Imperfect Information Dou Di Zhu

By hiding from each player the cards held in the other players’
hands during a game of Perfect Information Dou Di Zhu we create
the game of Imperfect Information Dou Di Zhu. Note that the
number of cards held by each player and the history of cards played
so far are still visible to all players, only the ranks of the held cards
are hidden. Since there are unknown cards, the game tree has a huge
branching factor for every possible combination of cards each
player could hold. Instead of searching this tree we apply a
determinization approach similar to the approach Ginsberg [4] uses
for Bridge. This involves searching multiple determinizations of the
game at each decision step. However, where Ginsberg uses
minimax search, we use the UCT algorithm.

At each decision our agent samples multiple determinizations by
randomly distributing the hidden cards between the other players.
Each of these determinizations is a game of Perfect Information

Dou Di Zhu, to which the UCT algorithm is then applied. The
actions available in the first layer of the tree are the same for each
determinization since the cards our agent holds are the same in each
case. The visits to each action for each determinization are summed
and our agent selects the action with the highest total number of
visits.

5 EXPERIMENTS

In the experiments described in this section we use determinized
UCT, where � denotes the number of determinizations (i.e. �
independent search trees) and % denotes the number of UCT
iterations per determinization.

5.1 Variation in Dou Di Zhu win rates

Although the strength of decisions made by each player has a
significant effect on the outcome of a game of Dou Di Zhu, some
random deals may favour one player over another, whereas others
may be much more sensitive to the players’ decisions. In an effort
to reduce the variance of subsequent results and thus allow them to
be compared more easily, we begin by choosing a set of 1000 Dou
Di Zhu deals to be used for the remainder of the experiments. The
practice of specifying deck ordering in advance is common in
Bridge and Whist tournaments between human players, to minimise
the effect of luck when comparing players. This set of deals is
chosen such that when played by a set of identical AI agents (in this
case determinized UCT), the number of wins for a particular player
is as close as possible to the mean number of wins for 1000 random
deals. In order to choose such a set, we must first determine what
that mean is.

We generated 100 sets of 1000 random Dou Di Zhu deals, and
for each deal we played a single game with three determinized UCT
players, each with � = 50 determinizations and % = 250 UCT
iterations per determinization. For each set, we recorded how many
of the 1000 games were won by player 1. Figure 1 shows a
histogram of these numbers of wins.

From these results we find that the number of wins appears to be
normally distributed. The mean is � = 433.47; thus we choose a set
of deals for which player 1 achieved exactly 433 wins in this
experiment as our “representative” set for the remainder of this
paper. The standard deviation is + = 16.27 and so a 95%
confidence interval for the mean number of wins for player 1 is
[433.37, 433.57].

Figure 1. Histogram of win rates for the landlord player in 100 sets of 1000
Dou Di Zhu games.

5.2 Effect of - and . on playing strength

In these experiments, we played a number of games for each of our
1000 deals. In each game, players 2 and 3 used determinized UCT
with 40 determinizations and 250 UCT iterations per
determinization, whereas player 1 used determinized UCT with �
determinizations and % iterations per determinization, each game
with a different value for � and/or %. For each combination of � and %, we counted how many games out of the 1000 trials were won by
player 1.

5.2.1 Varying � while % remains fixed

In this first experiment, we fixed four values for %, namely 50,
100, 250 and 500. For each of these, we used a number of values for �, ranging from 1 to 100.

Figure 2 plots the number of wins against �. We see that playing
strength increases rapidly with � < 20, with rapidly diminishing
returns for � ≥ 20. However, there seems to be slightly more
benefit to increasing the number of determinizations beyond 30
when the number of UCT iterations is low.

Figure 2. Plot of number of landlord (player 1) wins against number of
determinizations, for fixed numbers of UCT iterations per determinization.

5.2.2 Varying % while � remains fixed

The conditions for this experiment were similar to those for the
previous experiment, with the exception that we fixed four values of � (namely 5, 10, 25 and 40) and varied % (from 25 to 1000). The
results are plotted in Figure 3. For % ≤ 300 the playing strength
increases logarithmically with the number of simulations, levelling
off for % > 300.

Figure 3. Plot of number of landlord (player 1) wins against number of UCT
iterations per determinization, for fixed numbers of determinizations.

5.2.3 Varying � and % while �% remains fixed

Arguably the fairest comparison of the relative strength of different
AI agents is to allocate them the same length of time (or the same
number of CPU cycles) to make their decisions. However, this is
not ideal from a scientific point of view since such measurements
are inherently noisy and depend on issues of implementation and
hardware. Instead, we simulate this by allocating a fixed number of
UCT iterations per decision, making the (not unreasonable)
assumptions that the time for a single iteration is roughly constant
and the overall decision time is roughly linear in the number of
iterations.

In this experiment we fixed four values of a constant Σ (namely
2500, 5000, 10000 and 15000), varied � from 1 to 100, and took % = 45�6 for each value of � (so that �% ≈ Σ). With our current

implementation and hardware Σ = 10000 equates to approximately
1 CPU second of computation per move. Note that in this
experiment (as in the preceding two experiments), players 2 and 3
have �% = 40 × 250 = 10000.

Figure 4 plots the number of wins for player 1 against �. Given
the results of the preceding experiments, it is not surprising that
determinized UCT is weaker when � or % is too small, nor that its
strength is somewhat independent of these parameters when both
are sufficiently large.

400 408 416 424 432 440 448 456 464 472
0

5

10

15

20

25

Player 1 (landlord) wins in 1000 games

F
re

qu
en

cy
 in

 1
00

 s
et

s
of

 g
am

es

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

W
in

s
in

 1
0

0
0

 g
am

es

d = number of determinizations

s = 500
s = 250
s = 100
s = 50

0

50

100

150

200

250

300

350

400

450

500

25 100 400
W

in
s

in
 1

0
0

0
 g

am
es

s = number of UCT iterations

d = 40
d = 25
d = 10
d = 5

Figure 4. Plot of number of landlord (player 1) wins against number of
determinizations, for a fixed number of UCT simulations divided equally
among all determinizations.

5.3 Benefit of observing hidden information

As noted in Section 2.3.3, it is often useful in games of imperfect
information to make inferences about the hidden information.
However, it is not always clear how useful this inference may be.
Richards and Amir [26] demonstrate the usefulness of inference in
Scrabble by playing an AI agent with no inference engine against an
AI agent with the ability to “cheat” and observe directly its
opponent’s hidden rack of letters. The benefit of direct access to the
hidden information is an upper bound on the possible benefits of
inference.

In our experiment for Dou Di Zhu, we played two types of AI
agent against each other in various combinations: the determinized
UCT player used in previous experiments (with � = 40 and % = 250) and a perfect information player in which the 40
determinizations are replaced by 40 copies of the actual state of the
game. (This player still uses multiple UCT trees, but all trees have
the same root state, which is the actual state of the game).
Specifically, we take as a baseline the number of wins when each
player uses determinized UCT (i.e. has only imperfect information)
and measure the increase in numbers of wins when various players
instead use perfect information.

Table 2 and Figure 5 show the results of this experiment. We see
that knowledge of the other players’ hidden cards increases the
number of wins by around 7-12% (the benefit appears to be slightly
less for the landlord, and slightly greater for the player preceding
the landlord). Furthermore, if both non-landlord players can observe
the hidden information, their win rate increases by around 21%.

When all three players have perfect information, players 2 and 3
win 12.7% more games than if all three have imperfect information.
This suggests that perfect information is more beneficial to the non-
landlord players than to the landlord.

Table 2. The increase in numbers of wins over 1000 games when the
specified player(s) gain perfect information, and all other player(s) have
imperfect information. For example, if player 2 has perfect information and
players 1 and 3 have imperfect information, player 2 wins 86 more games
than if all three players have imperfect information. Note that a win for
player 2 is also counted as a win for player 3, and vice versa.

Player(s) with
perfect information

Increase in number of wins
(1000 games)

Player 1
Player 2
Player 3

Players 2 and 3

69
86
119
210

Figure 5. Number of wins for players with perfect versus imperfect
information. Each pair of bars shows the numbers of wins for the specified
player(s) when they have perfect or imperfect information and all other
players have imperfect information.

6 CONCLUSION

In this paper we presented the hugely popular Chinese card game
Dou Di Zhu as an interesting game for investigation. We applied a
determinization approach using the UCT algorithm to search each
determinization. Although we have yet to accurately determine the
playing strength of the resulting AI agent (not least due to the lack
of other strong AI for Dou Di Zhu against which to test) our
informal experiments (playing against this paper’s authors) suggest
that it is on a par with human players. The nature of Dou Di Zhu
suggests that the effects of some of the problems with
determinization outlined in Section 2.3.1, are unlikely to be major:
in particular, strategies such as information hiding or bluffing do
not generally play an important role.

We showed that the performance of determinized UCT is not
particularly sensitive to the trade-off between the number of
determinizations and the number of UCT iterations per
determinization. When the number of determinizations is fixed,
performance scales approximately logarithmically with respect to
the number of UCT iterations; when the number of simulations is
fixed, performance increases rapidly with the number of
determinizations until some threshold (approximately 20 in our
experiments) is reached, after which increasing the number of
determinizations does not significantly increase the playing
strength. We do not see any obvious reason why these results
should be specific to Dou Di Zhu; however we plan to repeat these
experiments for other stochastic games of imperfect information to
investigate this further.

We have shown that the increase in playing strength from an
accurate inference engine is potentially large. One of our future

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

W
in

s
in

 1
0

0
0

 g
am

es

d = number of determinizations

ds = 15000
ds = 10000
ds = 5000
ds = 2500

0
100
200
300
400
500
600
700
800
900

Player 1 Player 2 Player 3 Players 2 & 3

W
in

s
in

 1
0

0
0

 g
am

es

Perfect information Imperfect information

aims is to find an inference method for Dou Di Zhu that achieves
some of this increase. Conceptually, it is easy to combine an
inference model with determinization: instead of sampling
determinizations at random, use determinizations that the inference
model identifies as being close to the actual state. Our next step is to
design an inference model that can identify such determinizations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments.
This work is funded by grant EP/H049061/1 of the UK Engineering
and Physical Sciences Research Council (EPSRC).

REFERENCES
[1] C.E. Shannon, “Programming a computer for playing chess,”

Philosophical Magazine (Series 7), vol. 41, 1950, p. 256–275.
[2] A.L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers,” IBM Journal of Research and Development, vol. 3, Jul.
1959, pp. 210-229.

[3] C.S. Lee, M.H. Wang, G. Chaslot, J.B. Hoock, A. Rimmel, O.
Teytaud, S.R. Tsai, S.C. Hsu, and T.P. Hong, “The computational
intelligence of MoGo revealed in Taiwanʼs computer Go
tournaments,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 1, 2009, p. 73–89.

[4] M.L. Ginsberg, “GIB: Imperfect information in a computationally
challenging game,” Journal of Artificial Intelligence Research, vol.
14, 2002, p. 313–368.

[5] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike
solitaire with Monte-Carlo planning,” Proc. ICAPS-2009, 2009, p.
26–33.

[6] S. Yoon, A. Fern, and R. Givan, “FF-Replan: A Baseline for
Probabilistic Planning,” 17th International Conference on Automated
Planning and Scheduling (ICAPS-07), 2007, p. 352–359.

[7] R.B. Myerson, Game Theory: Analysis of Conflict. Harvard University
Press, 1991.

[8] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
Machine Learning: ECML 2006, 2006, p. 282–293.

[9] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, 2002, pp.
235-256.

[10] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” Proceedings of the 24th international conference on Machine
learning, ACM, 2007, p. 273–280.

[11] G. Chaslot, M. Winands, and H. van Den Herik, “Parallel Monte-
Carlo tree search,” Computers and Games, 2008, p. 60–71.

[12] H. Finnsson, “CADIA PLAYER : A Simulation-Based General Game
Player,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 1, 2009, pp. 4-15.

[13] G. Chaslot, C. Fiter, J.B. Hoock, A. Rimmel, and O. Teytaud,
“Adding expert knowledge and exploration in Monte-Carlo Tree
Search,” Advances in Computer Games, 2010, p. 1–13.

[14] S. Yoon, A. Fern, R. Givan, and S. Kambhampati, “Probabilistic
Planning via Determinization in Hindsight,” Proceedings of the 23rd
AAAI Conference on Artificial Intelligence, 2008, pp. 1010-1017.

[15] E.K.P. Chong, R.L. Givan, and H. Chang, “A framework for
simulation-based network control via hindsight optimization,”
Proceedings of the 39th IEEE Conference on Decision and Control,
2000, pp. 1433-1438.

[16] J. Borsboom, J.-takeshi Saito, G. Chaslot, and J. Uiterwijk, “A
comparison of Monte-Carlo methods for Phantom Go,” Proc. 19th
Belgian–Dutch Conference on Artificial Intelligence–BNAIC, Utrecht,
The Netherlands, 2007.

[17] P. Ciancarini and G.P. Favini, “Monte Carlo tree search in
Kriegspiel,” Artificial Intelligence, vol. 174, Jul. 2010, pp. 670-684.

[18] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, 2009.

[19] I. Frank and D. Basin, “Search in games with incomplete information:
a case study using Bridge card play,” Artificial Intelligence, 1998, pp.
87-123.

[20] J. Long, N. Sturtevant, and M. Buro, “Understanding the Success of
Perfect Information Monte Carlo Sampling in Game Tree Search,”
AAAI Conference on Artificial Intelligence, 2009.

[21] D. Koller and A. Pfeffer, “Representations and solutions for game-
theoretic problems,” Artificial Intelligence, vol. 94, 1997, p. 167–215.

[22] M. Zinkevich, M. Johanson, and M. Bowling, “Regret minimization in
games with incomplete information,” 21st Annual Conference on
Neural Information Processing Systems (NIPS 2007), 2007.

[23] M. Ponsen, J. Ramon, T. Croonenborghs, K. Driessens, and K. Tuyls,
“Bayes-Relational Learning of Opponent Models from Incomplete
Information in No-Limit Poker,” Proceedings of the Twenty-third
National Conference on Artificial Intelligence (AAAI-08), 2008, pp.
1485-1487.

[24] M. Ponsen, G. Gerritsen, and G. Chaslot, “Integrating Opponent
Models with Monte-Carlo Tree Search in Poker,” Proceedings of
Interactive Decision Theory and Game Theory Workshop at the
Twenty-Fourth Conference on Artificial Intelligence (AAAI-10), 2010,
pp. 37-42.

[25] R.J.S. Baker and P.I. Cowling, “Bayesian opponent modeling in a
simple poker environment,” IEEE Symposium on Computational
Intelligence and Games, 2007, pp. 125-131.

[26] M. Richards and E. Amir, “Opponent modeling in Scrabble,”
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence, 2007, p. 1482–1487.

[27] M. Buro, J.R. Long, T. Furtak, and N. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” Proc.
21st International Joint Conference on Artificial Intelligence (IJCAI
2009), Morgan Kaufman, 2009, pp. 1407-113.

[28] J. McLeod, “Dou Dizhu,” 2010. http://www.pagat.com/climbing/
doudizhu.html. Accessed 4th February 2011.

