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Abstract.  Monte-Carlo Tree Search (MCTS) is a class of game tree 
search algorithms that have recently proven successful for 
deterministic games of perfect information, particularly the game of 
Go. Determinization is an AI technique for making decisions in 
stochastic games of imperfect information by analysing several 
instances of the equivalent deterministic game of perfect 
information. In this paper we combine determinization techniques 
with MCTS for the popular Chinese card game Dou Di Zhu. In 
determinized MCTS, there is a trade-off between the number of 
determinizations searched and the time spent searching each one; 
however, we show that this trade-off does not significantly affect 
the performance of determinized MCTS, as long as both quantities 
are sufficiently large. We also show that the ability to see 
opponents’ hidden cards in Dou Di Zhu is a significant advantage, 
which suggests that inference techniques could potentially lead to 
much stronger play.1 

1 INTRODUCTION 

From the inception of the field of game AI until relatively recently, 
the vast majority of research has focussed on games that are 
deterministic (do not have chance events) and have perfect 
information (all players can observe the exact state of the game). 
Chess [1] and checkers [2] are two well-known and well-studied 
examples of such games. 

One recent innovation in AI for deterministic games of perfect 
information is Monte-Carlo Tree Search (MCTS). MCTS iteratively 
builds a partial search tree, using random simulated games to 
evaluate nonterminal states. This makes it well-suited to games with 
long trajectories and high branching factor, as well as games where 
good heuristic state evaluation functions are difficult to find. The 
game of Go exemplifies both of these properties; MCTS has proven 
particularly successful for Go [3], and it is this success that has 
fuelled much recent interest in MCTS. 

Work on AI for games that are stochastic (have chance events) 
or have imperfect information (the state of the game is only partially 
observable) is comparatively recent. One popular approach to such 
games is determinization. The game is reduced to several instances 
of a deterministic game of perfect information (called 
determinizations), by randomly fixing the values of future chance 
events and hidden information. Each of these determinizations is 
analysed by AI techniques for deterministic games of perfect 
information and the results are combined to yield a decision for the 
original game. Although it is not a fool-proof approach for all 
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games, determinization has proven successful in games such as 
bridge [4] and Klondike solitaire [5], as well as the domain of 
probabilistic planning [6]. 

There is an important trade-off to be made in determinization, 
between the number of determinizations, and the amount of effort 
spent on analysing each one. However, in this paper we present 
experimental results suggesting that this trade-off is not as 
important as it may appear at first: as long as both parameters are 
sufficiently large, adjusting the balance between them does not have 
a significant effect on playing strength. 

It is common in games of imperfect information for certain 
pieces of information to be visible to some players but hidden from 
others. An important technique in such games is the ability to infer 
this information by observing the actions of other players. An upper 
bound can be placed on the performance gain that can be achieved 
by inference by measuring the performance of a player able to 
observe the exact state of the game, effectively modelling a player 
who is able to instantly and perfectly infer any hidden information. 
Using this method, we show that the potential benefit of inference is 
significant: if two cooperating players can observe the hidden 
information belonging to each other and to their opponent, then they 
can improve their win rate by around 21%. 

The structure of this paper is as follows. Section 2 reviews 
existing work on MCTS and on AI for stochastic games of 
imperfect information. Section 3 introduces the card game Dou Di 
Zhu, which serves as our application domain for the remainder of 
this paper. Section 0 describes the version of determinized MCTS 
we use, and addresses some technical issues of how this is applied 
to Dou Di Zhu. Section 5 presents experimental results, including 
measurement of the variance in win rates for Dou Di Zhu (Section 
5.1), the trade-off between number of determinizations and number 
of MCTS iterations per determinization (Section 5.2), and the 
potential increase in playing strength obtainable through inference 
of hidden information (Section 5.3). Finally, Section 6 gives some 
concluding remarks and directions for future work. 

2 LITERATURE REVIEW AND BACKGROUND 

2.1 Preliminaries 

This section introduces briefly the notions of uncertainty 
(stochasticity and/or imperfect information) in games. For more 
details we refer the reader to a standard textbook on game theory, 
e.g. [7]. 

A game can be thought of as a multi-agent Markov decision 
process; that is, a Markov process where, at each state, one of the 
agents (or players) is allowed to make a decision which influences 



 

the transition to the next state. A game is said to be deterministic if 
taking a particular action from a given state always leads to the 
same state transition. If a game is not deterministic, i.e. there is 
some element of randomness (or chance) to the transitions, the 
game is said to be stochastic. A game has perfect information if all 
players are able to observe the current state of the game. If a game 
does not have perfect information, i.e. the underlying Markov 
process is partially observable, the game is said to have imperfect 
information. For example, many card games are stochastic (because 
they are played with a shuffled deck) with imperfect information 
(because no player is able to observe the cards held by the other 
players). Where there are stochastic state transitions, we may also 
regard this as a deterministic game where chance outcomes (e.g. the 
order of cards in a shuffled deck) are decided in advance, but are 
hidden from all players. This way of thinking gives rise to the 
determinization approach we will discuss later. 

In a game of imperfect information, the states as observed by 
each player are partitioned into information sets, where an 
information set is defined as a set of states that are indistinguishable 
from the player’s point of view. During the game, the player cannot 
observe the current state, but can observe the current information 
set. 

2.2 Monte-Carlo Tree Search 

Monte-Carlo Tree Search (MCTS) is a class of game tree search 
algorithms that make use of simulated games to evaluate non-
terminal states. Simulated games select random actions until a 
terminal state is reached and the reward is averaged over multiple 
simulations to estimate the strength of each action. MCTS 
algorithms have gained in popularity in recent years due to their 
success in the field of computer Go [3]. In particular the UCT 
algorithm [8] proposed in 2006 has led to the recent upsurge of 
interest in MCTS algorithms. UCT enables a selective search to be 
performed where only the most promising areas of the tree are 
searched. This is particularly useful in domains with a large 
branching factor. 

MCTS algorithms build a sub-tree of the entire decision tree 
where usually one new node is added after every simulation. Each 
node stores estimates of the rewards obtained by selecting each 
action and an improved estimate is available after every simulation 
step. In the case of the UCT algorithm, each decision in the tree is 
treated as a Multi-Armed Bandit problem where the arms are 
actions, and the rewards are the results of performing a Monte-
Carlo simulation after selecting that action. The UCB algorithm [9] 
is used to guide the selection of actions at each decision in the tree. 
The UCB algorithm ensures that the tree will be selectively 
explored, performing a deeper search in more promising areas of 
the tree.  

There has been some research on modifying UCT to achieve 
better performance for particular domains (such as Go), with the 
RAVE heuristic [10] being an example of such a modification. Also 
the algorithm can be executed in parallel [11] allowing MCTS 
agents to exploit modern multi-core and multi-processor hardware. 
UCT has been successfully applied to a wide variety of challenging 
domains such as General Game Playing [12], where the rules of the 
game are not known in advance and an AI player must use a very 
general approach which does not depend upon specific game 
knowledge. UCT requires very little domain knowledge and is 
therefore useful in domains where no good heuristics are known. 

The structure of MCTS algorithms is generally quite similar: a 
discrete number of iterations are performed, after which an action 
from the root node is selected according to statistics collected about 

each action. Each simulation step performs four operations on the 
sub-tree built by the algorithm, namely Selection, Expansion, 
Simulation and Back-Propagation. 

2.2.1 Selection 

Starting from the root node, an action is selected at each node in the 
current partial game tree, according to some criterion. This 
mechanism is applied iteratively until it reaches either a terminal 
game state or a node which is not in the current partial game tree. 

In the case of the UCT algorithm the mechanism used for 
traversing the tree is the UCB algorithm. After initially selecting 
every action once, the UCB algorithm selects the action which 
maximizes 

 
 ∑ ��,���(	)���
�(�) + ��ln(�)
�(�) (1) 

 
where ��,� denotes the reward obtained by selecting arm � on trial �, � is the number of times the current node has been visited 
previously, 
�(�) is the number of these visits in which action � was 
selected, and � is a constant controlling the balance between 
exploration and exploitation (often � = √2). The UCB algorithm 
balances exploration of untried moves with exploitation of known 
good moves. This enables UCT to find the most promising areas of 
the tree and search these further. 

 

2.2.2 Expansion 

If the state reached is terminal then there is no need to expand the 
tree or perform a simulation and the final result of the game is 
Back-Propagated. If the state is not terminal then it is added to the 
tree. 

2.2.3 Simulation 

Starting from the node added in the expansion phase (or the selected 
leaf node if no node was added), the game is played out to 
completion by choosing random moves for each player. The result 
of this simulated game is then used to update the statistics in the 
tree during Back-Propagation. Choosing an effective method for 
quickly selecting random moves which give rise to unbiased game 
simulations, and which are also realistic enough to be strongly 
correlated with the eventual winner from a position, appears crucial 
to strong play in MCTS, particularly for computer Go [13].  

2.2.4 Back-Propagation 

Each node visited during selection has its statistics updated. In the 
case of the UCT algorithm the number of times the node has been 
visited and the cumulative reward of simulations passing through 
that node (from the point of view of the player selecting the action 
at the node) are recorded. These are then used in turn by the UCB 
algorithm during the next selection phase. 

2.3 AI for games with uncertainty 

This section briefly surveys research on AI for games with 
stochasticity and/or imperfect information. 



 

2.3.1 Determinization 

One approach to designing AI for games with stochasticity and/or 
imperfect information is determinization, also known as perfect 
information Monte Carlo (PIMC). For an instance of a stochastic 
game with imperfect information, a determinization is an instance 
of the equivalent deterministic game of perfect information, in 
which the current state is chosen from the AI agent’s current 
information set, and the outcomes of all future chance events are 
fixed and known. For example, a determinization of a card game is 
an instance of the game where all players’ cards, and the shuffled 
deck, are visible to all players. We then create several 
determinizations from the current game state, analyse each one 
using AI techniques for deterministic games of perfect information, 
and combine these decisions to yield a decision for the original 
game. 

Ginsberg’s GIB system [4] applies determinization to create an 
AI player for the card game Bridge which plays at the level of 
human experts. GIB begins by sampling a set � of card deals 
consistent with the current state of the game. (The question of how � is sampled is rather more subtle than it first appears, and indeed 
Ginsberg [4] does not give complete details). For each of these 
deals � ∈ � and for each available action �, the perfect information 
(“double dummy”) game is searched to find the score �(�, �) 
resulting from playing action � in determinization �. The search 
uses a highly optimised exhaustive search of the double dummy 
Bridge game tree. Finally, GIB chooses the action for which the 
sum ∑ �(�, �)�∈�  is maximal. 

A domain closely related to (single-player) stochastic games of 
imperfect information is that of probabilistic planning. Yoon et al’s 
FF-Replan [6] and FF-Hindsight [14] systems apply determinization 
to probabilistic planning problems. Despite the simplicity of its 
approach, FF-Replan outperformed more complex systems to win 
the IPPC-04 and perform well in the IPPC-06 probabilistic planning 
competitions. 

Bjarnason et al [5] present a variant of UCT for stochastic 
games, called Sparse UCT and apply it to the single-player card 
game of Klondike Solitaire. In a stochastic game, a single state-
action pair can lead to multiple successor states (corresponding to 
the possible outcomes of the chance event); Sparse UCT handles 
this by allowing multiple child nodes for each action from each 
state. The selection phase selects actions using UCB, but the 
traversal to child nodes is stochastic, as is the addition of child 
nodes during expansion. Sparse UCT imposes an upper limit   on 
the number of child nodes for each state-action pair. 

Bjarnason et al [5] also study an ensemble version of Sparse 
UCT, in which several search trees are constructed independently 
and their results (the expected rewards of actions at the root) are 
averaged. They find that ensemble variants of UCT often produce 
better results in less time than their single-tree counterparts. The 
ensemble case with  = 1, which Bjarnason et al call HOP-UCT, is 
equivalent to a straightforward application of determinization (more 
specifically, hindsight optimisation [15]) with UCT as deterministic 
solver, in which the determinization is constructed lazily as UCT 
encounters each chance event. 

Bjarnason et al [5] treat Klondike Solitaire as a stochastic game 
of perfect information: rather than being fixed from the start of the 
game, the values of face down cards are determined as chance 
events at the moment they are revealed. This works for single-
player games where the hidden information does not influence the 
game until it is revealed, but generally does not work for 
multiplayer games where the hidden information influences the 
other players’ available and chosen actions from the beginning of 
the game. Hence the specific methods of Sparse UCT and lazy 

determinization are not immediately applicable to multiplayer 
games, but the general ideas are transferable. 

Bjarnason et al show that Sparse UCT is able to win around 35% 
of Klondike Solitaire games, which more than doubles the estimated 
win rate for human players. Determinized MCTS also shows 
promise in games such as Phantom Go [16] and Phantom Chess 
(Kriegspiel) [17], among others. 

Despite these successes, determinization is not without its critics. 
Russell and Norvig [18] describe it (somewhat dismissively) as 
“averaging over clairvoyance”. They point out that determinization 
will never choose to make an information gathering play (i.e. a play 
that causes an opponent to reveal some hidden information) nor will 
it make an information hiding play (i.e. a play that avoids revealing 
some of the agent’s hidden information to an opponent). Ginsberg 
[4] adds weight to this claim by making the same observations 
about GIB specifically. One explanation for this is that, from the 
point of view of the decision-making process in each 
determinization, there is no hidden information to gather or hide. 

Russell and Norvig’s criticisms of determinization are valid but 
equally valid are the experimental successes of determinization. 
Frank and Basin [19] identify two key problems with 
determinization: 

1. Strategy fusion. An AI agent can obviously not make different 
decisions from different states in the same information set 
(since, by definition, it cannot distinguish such states); 
however, the deterministic solvers can and do make different 
decisions in different determinizations.  

2. Non-locality. Some determinizations may be vanishingly 
unlikely (rendering their solutions irrelevant to the overall 
decision process) due to the other players’ abilities to direct 
play away from the corresponding states. 

Building on the work of Frank and Basin, Long et al [20] 
identify three parameters of game trees and show that the 
effectiveness of determinization has some dependence on the 
game’s position in this parameter space. The parameters measure 
the ability of a player to influence the outcome of a game in its late 
stages (leaf correlation), the bias in the game towards a particular 
player (bias) and the rate at which hidden information is revealed 
(disambiguation). Long et al [20] demonstrate how these 
parameters can be used to predict whether determinization is an 
appropriate method for a given game. 

2.3.2 Other approaches 

One alternative approach to tree search for stochastic games is 
expectimax search [18]. This is a modification of the well-known 
minimax algorithm to game trees containing chance nodes. The 
value of a chance node is the expected value of a randomly chosen 
child (i.e. the sum of the values of its children weighted by the 
probabilities of the corresponding chance outcomes). Unfortunately, 
expectimax is not well-suited to the type of card games studied in 
this paper, where there is a single chance node with a very large 
branching factor (corresponding to the initial shuffling of the deck), 
as the resulting game tree is too large to search even with MCTS. 

As noted previously, the field of game AI focussed on 
deterministic games of perfect information until relatively recently. 
The same is not true in the field of game theory, where stochastic 
games of imperfect information have been well studied [7]. Thus a 
popular approach to AI for such games is to compute (or 
approximate) a Nash equilibrium strategy; examples of this 
approach include Gala [21] and counterfactual regret [22]. While 
there is undeniable appeal in finding a strategy that is provably 
optimal, we feel that searching for Nash equilibria is often not the 



 

most appropriate approach to building strong game AI. The 
definition of Nash equilibrium requires only that the strategy is 
optimal against other optimal (Nash) strategies, so Nash strategies 
often fail to fully exploit suboptimal opponents. 

2.3.3 Inference 

In games of imperfect information, it is often possible to infer 
hidden information by observing the actions of the other players, 
according to some model of the other players’ decision processes. 
This type of inference has frequently been applied to the game of 
poker [23-25], but also to other games such as Scrabble [26] and the 
card game Skat [27] which has similarities to the card game Dou Di 
Zhu which we study in this paper. Developing an inference engine 
for Dou Di Zhu is a subject of current and future work. Section 5.3 
discusses the increase in playing strength we expect to see from a 
strong inference engine. 

3 DOU DI ZHU 

3.1 History and Popularity of Dou Di Zhu 

Dou Di Zhu [28] is a 3-player gambling card game which originated 
in China. It falls into the class of Climbing Games but also has 
similar elements to Trick Taking Games. The name Dou Di Zhu 
translates into English as “Fight The Landlord” and is a reference to 
the class struggle during the Cultural Revolution in China where 
peasants were authorized to violate the human rights of their 
Landlords. In the original version of the game two players play 
compete together against a third player, the Landlord. There are 
other versions of the game involving four and five players but these 
are less popular. 

The game was only played in a few regions of China until quite 
recently, when versions of the game on the Internet have led to an 
increase in the popularity of the game throughout the whole 
country. Today Dou Di Zhu is played by millions of people online, 
although almost exclusively in China, with one website reporting 
1,450,000 players per hour. In addition there have been several 
major Dou Di Zhu tournaments including one in 2008 which 
attracted 200,000 players.Dou Di Zhu is interesting from an AI 
perspective as it necessitates both competition (between the 
Landlord and the other two players) and cooperation (between the 
two non-Landlord players). 

3.2 Rules 

Dou Di Zhu2 uses a standard 52 card deck with the addition of a 
black joker and a red joker. Suit is irrelevant but the cards are 
ranked with 3 being the lowest rank and 2 being the highest rank 
(higher than Ace). The jokers are ranked higher than a two, with the 
red joker ranked higher than the black joker. Each player is dealt a 
hand of 17 cards from a shuffled deck and the remaining three cards 
are placed faced down on the table. 

3.2.1 Bidding Phase 

Each player takes turns to bid on their hand with the possible bids 
being 1, 2 or 3 chips. Bids must be strictly higher than the current 
bid but each player has the option to pass. This continues until two 
of the players pass consecutively. If any player bids 3 chips then the 

                                                                 
2 There are different versions of the rules of Dou Di Zhu. The rules used 

in this work were taken from [28]. 

bidding phase immediately ends. If all three players initially pass, 
the cards are shuffled and dealt again. The winner of the bidding 
phase is designated as the Landlord and this player adds the three 
extra cards on the table into their hand, and plays first. The winning 
bid determines the stake for the game. 

3.2.2 Card Play Phase 

The goal of the game is to be the first to get rid of all cards in hand. 
If the Landlord wins, the other two players must each pay the stake 
to the Landlord. However if either of the other two players wins, the 
Landlord pays the stake to both opponents. This means the two non-
Landlord players must cooperate to beat the Landlord. The 
Landlord always plays first and then play moves around the table in 
a fixed direction. At the end of the game the stake is doubled if a 
player has failed to remove any cards from their hand. 

The card play takes place in a number of rounds until a player 
has no cards left. Whoever plays first can play any group of cards 
from their hand provided this group is a member of one of the legal 
move categories (see Table 1). The next player can play a group of 
cards from their hand provided this group is in the same category 
and has a higher rank than the group played by the previous player. 
If a player has no compatible group they must pass. This continues 
until two players pass, at which point the next player wins that 
round and may start a new round by playing a group of cards from 
any category. 

There are a few special rules for some of the categories. If the 
move being played is a straight run (of singles, pairs or trios) then 
the next player must play a straight run of the same type and length, 
ending on a higher ranked card. Straight runs can contain cards of 
any rank from 3 to Ace, but not cards of rank 2 or jokers. A Bomb 
or a Nuke (also known as a Rocket) may be played at any point but 
doubles the stake of the game. A Bomb may be followed by another 
Bomb of higher rank but not a Quadplex. 

Some categories allow extra kicker cards to be played with the 
group which have no effect on the category or rank of the move 
being played. A kicker can be any card provided it is of different 
rank to all the cards in the main group. If the kicker cards are single 
cards they must be of different rank and if the kicker cards are pairs 
they must be differently ranked pairs. Also a Nuke cannot be used 
as a kicker. If a move with kickers is played, the next player must 
play a move in the same category with the same number of kickers, 
although the ranks of the kicker cards are ignored. 

Table 1 summarises the categories of moves in Dou Di Zhu. 
 

Table 1. Description of the different move categories in Dou Di Zhu 

Name Description 
Solo Any individual card, for example A or 2. It is also possible to 

play runs of sequential cards with length at least 5, for 
example 345678 or 89TJQKA. 

Pair Any pair of identically ranked cards for example 55 or 77. It 
is possible to play runs of sequential pairs with length at least 
3, for example 334455 or TTJJQQKK. 

Trio Any three identically ranked cards for example AAA or 888. 
It is possible to play runs of sequential trios of any length, for 
example 444555 or TTTJJJQQQ. Each trio may also have a 
kicker attached, for example 444555TJ or 999QQ. 

Quadplex Any four identically ranked cards with two kickers attached, 
for examples 4444TJ or 999955KK. 

Bomb Any four identically ranked cards, for example 5555 or 2222. 
Nuke The red joker and the black joker together. 



 

3.3 Basic Strategy 

Dou Di Zhu is a game which requires substantial levels of skill from 
expert human players. The player who wins the bidding phase 
usually has a high confidence they were dealt a good hand although 
they have three extra cards to discard. Often a hand contains lower 
ranked individual cards that cannot form part of a bigger group and 
it is possible to play these by using them as kicker cards. In general 
most plays should reduce the number of moves needed to get rid of 
all cards. Bombs and Nukes are powerful since they can be played 
at any point, but they double the stake of the game. For this reason 
playing them early in the game is risky. 

Starting a new category is a good position to be in, allowing a 
player to choose a category where he holds multiple groups, or 
holds a high-ranking group that opponents are unlikely to be able to 
play on. Hence inference is an important aspect of Dou Di Zhu 
especially concerning the location of the high ranked cards in 
opponents’ hands. The two non-landlord players also need to work 
together since they either both win or both lose. This can be 
achieved by making plays that allow the other non-Landlord player 
to play cards or prevent the Landlord from making further plays. 

4 METHODOLOGY  

In order to focus only on the card play phase, it is possible to 
remove the bidding phase and designate that an arbitrarily chosen 
player gets the extra cards and is the Landlord.  

4.1 Perfect Information Dou Di Zhu 

It is possible to modify Dou Di Zhu to be a game of perfect 
information by playing with all cards face up at all times. This 
removes the need to make inferences about other player’s cards and 
allows the exact consequences of every action to be studied when 
searching the game tree. This version of the game we call Perfect 
Information Dou Di Zhu. 

In order to compare the results of playing multiple games of Dou 
Di Zhu, we count numbers of wins instead of cumulative rewards, 
ignoring the effects of player bidding and bombs/nukes.  We award 
a player 1 point for winning a dealt hand and 0 points for a loss. 
Since the UCB algorithm has been well studied with rewards in {0,1} we can benefit from the work of others in setting the 
parameter � which trades off exploration and exploitation in the 
UCB formula (1). 

4.2 Imperfect Information Dou Di Zhu 

By hiding from each player the cards held in the other players’ 
hands during a game of Perfect Information Dou Di Zhu we create 
the game of Imperfect Information Dou Di Zhu. Note that the 
number of cards held by each player and the history of cards played 
so far are still visible to all players, only the ranks of the held cards 
are hidden. Since there are unknown cards, the game tree has a huge 
branching factor for every possible combination of cards each 
player could hold. Instead of searching this tree we apply a 
determinization approach similar to the approach Ginsberg [4] uses 
for Bridge. This involves searching multiple determinizations of the 
game at each decision step. However, where Ginsberg uses 
minimax search, we use the UCT algorithm. 

At each decision our agent samples multiple determinizations by 
randomly distributing the hidden cards between the other players. 
Each of these determinizations is a game of Perfect Information 

Dou Di Zhu, to which the UCT algorithm is then applied. The 
actions available in the first layer of the tree are the same for each 
determinization since the cards our agent holds are the same in each 
case. The visits to each action for each determinization are summed 
and our agent selects the action with the highest total number of 
visits. 

5 EXPERIMENTS 

In the experiments described in this section we use determinized 
UCT, where � denotes the number of determinizations (i.e. � 
independent search trees) and % denotes the number of UCT 
iterations per determinization. 

5.1 Variation in Dou Di Zhu win rates 

Although the strength of decisions made by each player has a 
significant effect on the outcome of a game of Dou Di Zhu, some 
random deals may favour one player over another, whereas others 
may be much more sensitive to the players’ decisions. In an effort 
to reduce the variance of subsequent results and thus allow them to 
be compared more easily, we begin by choosing a set of 1000 Dou 
Di Zhu deals to be used for the remainder of the experiments. The 
practice of specifying deck ordering in advance is common in 
Bridge and Whist tournaments between human players, to minimise 
the effect of luck when comparing players. This set of deals is 
chosen such that when played by a set of identical AI agents (in this 
case determinized UCT), the number of wins for a particular player 
is as close as possible to the mean number of wins for 1000 random 
deals. In order to choose such a set, we must first determine what 
that mean is. 

We generated 100 sets of 1000 random Dou Di Zhu deals, and 
for each deal we played a single game with three determinized UCT 
players, each with � = 50 determinizations and % = 250 UCT 
iterations per determinization. For each set, we recorded how many 
of the 1000 games were won by player 1. Figure 1 shows a 
histogram of these numbers of wins. 

From these results we find that the number of wins appears to be 
normally distributed. The mean is � = 433.47; thus we choose a set 
of deals for which player 1 achieved exactly 433 wins in this 
experiment as our “representative” set for the remainder of this 
paper. The standard deviation is + = 16.27 and so a 95% 
confidence interval for the mean number of wins for player 1 is 
[433.37, 433.57]. 

 



 

 

Figure 1. Histogram of win rates for the landlord player in 100 sets of 1000 
Dou Di Zhu games. 

5.2 Effect of - and . on playing strength 

In these experiments, we played a number of games for each of our 
1000 deals. In each game, players 2 and 3 used determinized UCT 
with 40 determinizations and 250 UCT iterations per 
determinization, whereas player 1 used determinized UCT with � 
determinizations and % iterations per determinization, each game 
with a different value for � and/or %. For each combination of � and %, we counted how many games out of the 1000 trials were won by 
player 1. 

5.2.1 Varying � while % remains fixed 

In this first experiment, we fixed four values for %, namely 50, 
100, 250 and 500. For each of these, we used a number of values for �, ranging from 1 to 100. 

Figure 2 plots the number of wins against �. We see that playing 
strength increases rapidly with � < 20, with rapidly diminishing 
returns for � ≥ 20. However, there seems to be slightly more 
benefit to increasing the number of determinizations beyond 30 
when the number of UCT iterations is low. 

 

 

Figure 2. Plot of number of landlord (player 1) wins against number of 
determinizations, for fixed numbers of UCT iterations per determinization. 

5.2.2 Varying % while � remains fixed 

The conditions for this experiment were similar to those for the 
previous experiment, with the exception that we fixed four values of � (namely 5, 10, 25 and 40) and varied % (from 25 to 1000). The 
results are plotted in Figure 3. For % ≤ 300 the playing strength 
increases logarithmically with the number of simulations, levelling 
off for % > 300. 

 

 

Figure 3. Plot of number of landlord (player 1) wins against number of UCT 
iterations per determinization, for fixed numbers of determinizations. 

5.2.3 Varying � and % while �% remains fixed 

Arguably the fairest comparison of the relative strength of different 
AI agents is to allocate them the same length of time (or the same 
number of CPU cycles) to make their decisions. However, this is 
not ideal from a scientific point of view since such measurements 
are inherently noisy and depend on issues of implementation and 
hardware. Instead, we simulate this by allocating a fixed number of 
UCT iterations per decision, making the (not unreasonable) 
assumptions that the time for a single iteration is roughly constant 
and the overall decision time is roughly linear in the number of 
iterations. 

In this experiment we fixed four values of a constant Σ (namely 
2500, 5000, 10000 and 15000), varied � from 1 to 100, and took % = 45�6 for each value of � (so that �% ≈ Σ). With our current 

implementation and hardware Σ = 10000 equates to approximately 
1 CPU second of computation per move. Note that in this 
experiment (as in the preceding two experiments), players 2 and 3 
have �% = 40 × 250 = 10000. 

Figure 4 plots the number of wins for player 1 against �. Given 
the results of the preceding experiments, it is not surprising that 
determinized UCT is weaker when � or % is too small, nor that its 
strength is somewhat independent of these parameters when both 
are sufficiently large. 
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Figure 4. Plot of number of landlord (player 1) wins against number of 
determinizations, for a fixed number of UCT simulations divided equally 
among all determinizations. 

5.3 Benefit of observing hidden information 

As noted in Section 2.3.3, it is often useful in games of imperfect 
information to make inferences about the hidden information. 
However, it is not always clear how useful this inference may be. 
Richards and Amir [26] demonstrate the usefulness of inference in 
Scrabble by playing an AI agent with no inference engine against an 
AI agent with the ability to “cheat” and observe directly its 
opponent’s hidden rack of letters. The benefit of direct access to the 
hidden information is an upper bound on the possible benefits of 
inference. 

In our experiment for Dou Di Zhu, we played two types of AI 
agent against each other in various combinations: the determinized 
UCT player used in previous experiments (with � = 40 and % = 250) and a perfect information player in which the 40 
determinizations are replaced by 40 copies of the actual state of the 
game. (This player still uses multiple UCT trees, but all trees have 
the same root state, which is the actual state of the game). 
Specifically, we take as a baseline the number of wins when each 
player uses determinized UCT (i.e. has only imperfect information) 
and measure the increase in numbers of wins when various players 
instead use perfect information. 

Table 2 and Figure 5 show the results of this experiment. We see 
that knowledge of the other players’ hidden cards increases the 
number of wins by around 7-12% (the benefit appears to be slightly 
less for the landlord, and slightly greater for the player preceding 
the landlord). Furthermore, if both non-landlord players can observe 
the hidden information, their win rate increases by around 21%.  

When all three players have perfect information, players 2 and 3 
win 12.7% more games than if all three have imperfect information. 
This suggests that perfect information is more beneficial to the non-
landlord players than to the landlord. 

 

Table 2. The increase in numbers of wins over 1000 games when the 
specified player(s) gain perfect information, and all other player(s) have 
imperfect information. For example, if player 2 has perfect information and 
players 1 and 3 have imperfect information, player 2 wins 86 more games 
than if all three players have imperfect information. Note that a win for 
player 2 is also counted as a win for player 3, and vice versa. 

Player(s) with 
perfect information 

Increase in number of wins 
(1000 games) 

Player 1 
Player 2 
Player 3 

Players 2 and 3 

69 
86 
119 
210 

 
 

 

Figure 5. Number of wins for players with perfect versus imperfect 
information. Each pair of bars shows the numbers of wins for the specified 
player(s) when they have perfect or imperfect information and all other 
players have imperfect information. 

6 CONCLUSION 

In this paper we presented the hugely popular Chinese card game 
Dou Di Zhu as an interesting game for investigation. We applied a 
determinization approach using the UCT algorithm to search each 
determinization. Although we have yet to accurately determine the 
playing strength of the resulting AI agent (not least due to the lack 
of other strong AI for Dou Di Zhu against which to test) our 
informal experiments (playing against this paper’s authors) suggest 
that it is on a par with human players. The nature of Dou Di Zhu 
suggests that the effects of some of the problems with 
determinization outlined in Section 2.3.1, are unlikely to be major: 
in particular, strategies such as information hiding or bluffing do 
not generally play an important role.  

We showed that the performance of determinized UCT is not 
particularly sensitive to the trade-off between the number of 
determinizations and the number of UCT iterations per 
determinization. When the number of determinizations is fixed, 
performance scales approximately logarithmically with respect to 
the number of UCT iterations; when the number of simulations is 
fixed, performance increases rapidly with the number of 
determinizations until some threshold (approximately 20 in our 
experiments) is reached, after which increasing the number of 
determinizations does not significantly increase the playing 
strength. We do not see any obvious reason why these results 
should be specific to Dou Di Zhu; however we plan to repeat these 
experiments for other stochastic games of imperfect information to 
investigate this further. 

We have shown that the increase in playing strength from an 
accurate inference engine is potentially large. One of our future 
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aims is to find an inference method for Dou Di Zhu that achieves 
some of this increase. Conceptually, it is easy to combine an 
inference model with determinization: instead of sampling 
determinizations at random, use determinizations that the inference 
model identifies as being close to the actual state. Our next step is to 
design an inference model that can identify such determinizations. 
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