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Abstract. Monte-Carlo Tree Search (MCTB)a class of game tree
search algorithms that have recently proven sufidesor
deterministic games of perfect information, pattacly the game of
Go. Determinizationis an Al technique for making decisions in
stochastic games of imperfect information by aratysseveral
instances of the equivalent deterministic game drfgut
information. In this paper we combine determinizattechniques
with MCTS for the popular Chinese card game Dou Du.Zm
determinized MCTS, there is a trade-off between rineber of
determinizations searched and the time spent segréach one;
however, we show that this trade-off does not §igamtly affect
the performance of determinized MCTS, as long ab hoantities
are sufficiently large. We also show that the &pilto see
opponents’ hidden cards in Dou Di Zhu is a sigalfficadvantage,
which suggests that inference techniques couldntiatly lead to
much stronger play.

1 INTRODUCTION

From the inception of the field of game Al untilatvely recently,
the vast majority of research has focussed on gatimais are
deterministic (do not have chance events) and haerfect
information (all players can observe the exact state of thmejja
Chess [1] and checkers [2] are two well-known andl-stadied
examples of such games.

One recent innovation in Al for deterministic ganwsperfect
information isMonte-Carlo Tree Search (MCT)ICTS iteratively
builds a partial search treeising random simulated games to
evaluate nonterminal states. This makes it wellesuio games with
long trajectories and high branching factor, ad welgames where
good heuristic state evaluation functions are diffi to find. The
game of Go exemplifies both of these properties; M®&s proven
particularly successful for Go [3], and it is thesiccess that has
fuelled much recent interest in MCTS.

Work on Al for games that artochastic(have chance events)
or haveimperfect informatiorfthe state of the game is only partially
observable) is comparatively recent. One popularagch to such

games, determinization has proven successful inegasuch as
bridge [4] and Klondike solitaire [5], as well asetdomain of
probabilistic planning [6].

There is an important trade-off to be made in deigization,
between the number of determinizations, and theuatnof effort
spent on analysing each one. However, in this pagempresent
experimental results suggesting that this trade-sff not as
important as it may appear at first: as long as Ipatrameters are
sufficiently large, adjusting the balance betwdsam does not have
a significant effect on playing strength.

It is common in games of imperfect information foertain
pieces of information to be visible to some playaus hidden from
others. An important technique in such games isatility to infer
this information by observing the actions of otphkyers. An upper
bound can be placed on the performance gain timbesachieved
by inference by measuring the performance of aeplable to
observe the exact state of the game, effectivelgettiog a player
who is able to instantly and perfectly infer angden information.
Using this method, we show that the potential kienéfnference is
significant: if two cooperating players can obsette hidden
information belonging to each other and to thepagent, then they
can improve their win rate by around 21%.

The structure of this paper is as follows. Sectibmreviews
existing work on MCTS and on Al for stochastic ganafs
imperfect information. Section 3 introduces thedcgame Dou Di
Zhu, which serves as our application domain for rém@ainder of
this paper. Section 0 describes the version ofrehitized MCTS
we use, and addresses some technical issues ofhiievs applied
to Dou Di Zhu. Section 5 presents experimental ltesincluding
measurement of the variance in win rates for Do (Section
5.1), the trade-off between number of determinizetiand number
of MCTS iterations per determinization (Section 5.2phd the
potential increase in playing strength obtainabl®ugh inference
of hidden information (Section 5.3). Finally, Secti6 gives some
concluding remarks and directions for future work.

2 LITERATURE REVIEW AND BACKGROUND

games igdeterminization The game is reduced to several instances

of a deterministic game of perfect information [(edl

determinizationy by randomly fixing the values of future chance 2 1 Preliminaries

events and hidden information. Each of these détézations is
analysed by Al techniques for deterministic gamdsperfect
information and the results are combined to yielttaision for the
original game. Although it is not a fool-proof appch for all
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This section introduces briefly the notions afncertainty
(stochasticity and/or imperfect information) in gzsn For more
details we refer the reader to a standard textlmogame theory,
e.g. [7].

A gamecan be thought of as a multi-agent Markov decision
process; that is, a Markov process where, at e@th, ©ne of the
agents (omplayer9 is allowed to make a decision which influences



the transition to the next state. A game is saideddeterministicif
taking a particular action from a given state alsvdgads to the
same state transition. If a game is not determinise. there is
some element of randomness @rancé to the transitions, the
game is said to bstochastic A game haperfect informationf all
players are able to observe the current stateeofme. If a game
does not have perfect information, i.e. the undeglyMarkov
process is partially observable, the game is saidaveimperfect
information For example, many card games are stochasticubeca
they are played with a shuffled deck) with impetfedormation
(because no player is able to observe the cardks thethe other
players). Where there are stochastic state transitive may also
regard this as a deterministic game where chanm®mes (e.g. the
order of cards in a shuffled deck) are decideddwaace, but are
hidden from all players. This way of thinking giveise to the
determinization approach we will discuss later.

In a game of imperfect information, the states bseoved by
each player are partitioned intmformation sets where an
information set is defined as a set of statesdhaindistinguishable
from the player’s point of view. During the gamiee fplayer cannot
observe the current state, but can observe therdumformation
set.

2.2 Monte-Carlo Tree Search

Monte-Carlo Tree SearcfMCTS) is a class of game tree searc
algorithms that make use of simulated games touet@l non-
terminal states. Simulated games select randonorectuntil a
terminal state is reached and the reward is avdrager multiple
simulations to estimate the strength of each actiMCTS
algorithms have gained in popularity in recent gedue to their
success in the field of computer Go [3]. In patacuthe UCT
algorithm [8] proposed in 2006 has led to the réagrsurge of
interest in MCTS algorithms. UCT enables a seleci®arch to be
performed where only the most promising areas ef tiee are
searched. This is particularly useful in domainghwa large
branching factor.

MCTS algorithms build a sub-tree of the entire deaistree
where usually one new node is added after everylation. Each
node stores estimates of the rewards obtained legteg each
action and an improved estimate is available aftery simulation
step. In the case of the UCT algorithm, each decigi the tree is
treated as a Multi-Armed Bandit problem where thensarare
actions, and the rewards are the results of penmfgrma Monte-
Carlo simulation after selecting that action. The U&gorithm [9]
is used to guide the selection of actions at e&clistbn in the tree.
The UCB algorithm ensures that the tree will be $ilely
explored, performing a deeper search in more piomiareas of
the tree.

There has been some research on modifying UCT tewach
better performance for particular domains (suchGa$, with the
RAVE heuristic [10] being an example of such a micdtfon. Also
the algorithm can be executed in parallel [11] sty MCTS
agents to exploit modern multi-core and multi-pssme hardware.
UCT has been successfully applied to a wide vanéghallenging
domains such as General Game Playing [12], whereules of the
game are not known in advance and an Al player mssta very
general approach which does not depend upon spegidime
knowledge. UCT requires very little domain knowledged is
therefore useful in domains where no good heusistie known.

The structure of MCTS algorithms is generally quteilar: a
discrete number of iterations are performed, aftbich an action
from the root node is selected according to stesistollected about

each action. Each simulation step performs fouratpms on the
sub-tree built by the algorithm, namely Selectidixpansion,
Simulation and Back-Propagation.

2.2.1 Selection

Starting from the root node, an action is seleategach node in the
current partial game tree, according to some @oiter This
mechanism is applied iteratively until it reachéher a terminal
game state or a node which is not in the currertigbgame tree.

In the case of the UCT algorithm the mechanism ufeed
traversing the tree is the UCB algorithm. After iy selecting
every action once, the UCB algorithm selects theomactvhich
maximizes
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whereX; ; denotes the reward obtained by selecting aam trial ¢,

n is the number of times the current node has besited
previously,v;(n) is the number of these visits in which actjonas
selected, andt is a constant controlling the balance between
exploration and exploitation (oftek = +/2). The UCB algorithm
balances exploration of untried moves with exptaita of known

pgood moves. This enables UCT to find the most psotgiareas of

the tree and search these further.

2.2.2 Expansion

If the state reached is terminal then there is eedrto expand the
tree or perform a simulation and the final resdltttee game is
Back-Propagated. If the state is not terminal thes added to the
tree.

2.2.3 Simulation

Starting from the node added in the expansion pfaghe selected
leaf node if no node was added), the game is played to

completion by choosing random moves for each plajke result
of this simulated game is then used to update titEstics in the
tree during Back-Propagation. Choosing an effectivathod for

quickly selecting random moves which give rise tidiased game
simulations, and which are also realistic enoughbé¢o strongly
correlated with the eventual winner from a positiappears crucial
to strong play in MCTS, particularly for computer 3@3].

2.2.4 Back-Propagation

Each node visited during selection has its stafisipdated. In the
case of the UCT algorithm the number of times thdenhas been
visited and the cumulative reward of simulationsgiag through
that node (from the point of view of the playeresting the action
at the node) are recorded. These are then useudrnirby the UCB
algorithm during the next selection phase.

2.3 Al for gameswith uncertainty

This section briefly surveys research on Al for gamwith
stochasticity and/or imperfect information.



2.3.1 Determinization

One approach to designing Al for games with stoitias and/or
imperfect information isdeterminization also known asperfect
information Monte Carlo (PIMC)For an instance of a stochastic
game with imperfect information, determinizationis an instance
of the equivalent deterministic game of perfectoinfation, in
which the current state is chosen from the Al &ageotirrent
information set, and the outcomes of all futurent®aevents are
fixed and known. For example, a determinizatiom afard game is
an instance of the game where all players’ camd,the shuffled
deck, are visible to all players. We then createvessd
determinizations from the current game state, aealgach one
using Al techniques for deterministic games of getrinformation,
and combine these decisions to yield a decisionttier original
game.

Ginsberg's GIB system [4] applies determinizatiorcteate an
Al player for the card game Bridge which plays a tbvel of
human experts. GIB begins by sampling a Bebf card deals
consistent with the current state of the game. (unestion of how
D is sampled is rather more subtle than it firstegpp, and indeed
Ginsberg [4] does not give complete details). Facheof these
dealsd € D and for each available actian the perfect information
(“double dummy”) game is searched to find the scofe,d)
resulting from playing actiom in determinizationd. The search
uses a highly optimised exhaustive search of thébldodummy
Bridge game tree. Finally, GIB chooses the actionwbich the
sumy.4ep t(a, d) is maximal.

A domain closely related to (single-player) stotitagames of
imperfect information is that of probabilistic ptang. Yoon et al’'s
FF-Replan [6] and FF-Hindsight [14] systems applgduinization
to probabilistic planning problems. Despite the @inity of its
approach, FF-Replan outperformed more complex systenwin
the IPPC-04 and perform well in the IPPC-06 prolistii planning
competitions.

Bjarnason et al [5] present a variant of UCT forchastic
games, calledSparse UCTand apply it to the single-player card
game of Klondike Solitaire. In a stochastic gamesirggle state-
action pair can lead to multiple successor statesg¢sponding to
the possible outcomes of the chance event); Spa@E handles
this by allowing multiple child nodes for each actifrom each
state. The selection phase selects actions using WoB,the
traversal to child nodes is stochastic, as is ftidit@n of child
nodes during expansion. Sparse UCT imposes an lipgew on
the number of child nodes for each state-action pai

Bjarnason et al [5] also study amsembleversion of Sparse
UCT, in which several search trees are constructddpendently
and their results (the expected rewards of actainthe root) are
averaged. They find that ensemble variants of UG&noproduce
better results in less time than their single-tteenterparts. The
ensemble case witlh = 1, which Bjarnason et al caHOP-UCT, is
equivalent to a straightforward application of detiaization (more
specifically,hindsight optimisatiorf15]) with UCT as deterministic
solver, in which the determinization is constructedily as UCT
encounters each chance event.

Bjarnason et al [5] treat Klondike Solitaire as achastic game
of perfect information: rather than being fixedrfrahe start of the
game, the values of face down cards are determasedhance
events at the moment they are revealed. This wibkssingle-
player games where the hidden information doesnfhtence the
game until it is revealed, but generally does natrkw for
multiplayer games where the hidden information uefices the
other players’ available and chosen actions froenlibginning of
the game. Hence the specific methods of Sparse UGIT lazy

determinization are not immediately applicable taultiplayer
games, but the general ideas are transferable.

Bjarnason et al show that Sparse UCT is able to vanrad 35%
of Klondike Solitaire games, which more than doslilee estimated
win rate for human players. Determinized MCTS aldmwes
promise in games such as Phantom Go [16] and PhaGloess
(Kriegspiel) [17], among others.

Despite these successes, determinization is nboutits critics.
Russell and Norvig [18] describe it (somewhat dismiy) as
“averaging over clairvoyance”. They point out tdaterminization
will never choose to make an information gatheptay (i.e. a play
that causes an opponent to reveal some hiddenmafan) nor will
it make an information hiding play (i.e. a playttla&oids revealing
some of the agent’s hidden information to an opptnésinsberg
[4] adds weight to this claim by making the samesavbations
about GIB specifically. One explanation for thistligt, from the
point of view of the decision-making process in teac
determinization, there is no hidden informatiorgé&ther or hide.

Russell and Norvig's criticisms of determinizatiore aalid but
equally valid are the experimental successes ofrohiization.
Frank and Basin [19] identify two key problems with
determinization:

1. Strategy fusionAn Al agent can obviously not make different
decisions from different states in the same infdioma set
(since, by definition, it cannot distinguish sucltates);
however, the deterministic solvers can and do nufiferent
decisions in different determinizations.

Non-locality. Some determinizations may be vanishingly
unlikely (rendering their solutions irrelevant tbet overall
decision process) due to the other players’ atslitio direct

play away from the corresponding states.

Building on the work of Frank and Basin, Long et aD]
identify three parameters of game trees and shoat the
effectiveness of determinization has some deperdent the
game’s position in this parameter space. The pammeneasure
the ability of a player to influence the outcomeaajame in its late
stages leaf correlatior), the bias in the game towards a particular
player pias) and the rate at which hidden information is réega
(disambiguatioph Long et al [20] demonstrate how these
parameters can be used to predict whether deteratiion is an
appropriate method for a given game.

2.3.2 Other approaches

One alternative approach to tree search for sttichgames is
expectimax searcfil8]. This is a modification of the well-known
minimax algorithm to game trees containing chanodes. The
value of a chance node is the expected value ahdomly chosen
child (i.e. the sum of the values of its childreeighted by the
probabilities of the corresponding chance outcomigdsjortunately,
expectimax is not well-suited to the type of caeings studied in
this paper, where there is a single chance node avitery large
branching factor (corresponding to the initial twng of the deck),
as the resulting game tree is too large to seareh with MCTS.

As noted previously, the field of game Al focussed
deterministic games of perfect information untibtively recently.
The same is not true in the field of game theoryere stochastic
games of imperfect information have been well gddi7]. Thus a
popular approach to Al for such games is to comp(de
approximate) a Nash equilibrium strategy; examptes this
approach include Gala [21] and counterfactual tefz2]. While
there is undeniable appeal in finding a strategat iB provably
optimal, we feel that searching for Nash equiliigaften not the



most appropriate approach to building strong game Fhe
definition of Nash equilibrium requires only thdtet strategy is
optimal against other optimal (Nash) strategiesNash strategies
often fail to fully exploit suboptimal opponents.

2.3.3 Inference

In games of imperfect information, it is often pibds to infer

hidden information by observing the actions of titeer players,
according to some model of the other players’ degiprocesses.
This type of inference has frequently been appleethe game of
poker [23-25], but also to other games such astiBtEd26] and the
card game Skat [27] which has similarities to tamlayame Dou Di
Zhu which we study in this paper. Developing areiahce engine
for Dou Di Zhu is a subject of current and futurerkv Section 5.3
discusses the increase in playing strength we éxpesee from a
strong inference engine.

3 DOU DI ZHU

3.1 History and Popularity of Dou Di Zhu

Dou Di Zhu [28] is a 3-player gambling card gameahtoriginated
in China. It falls into the class of Climbing Gamest lalso has
similar elements to Trick Taking Games. The namei Do Zhu
translates into English as “Fight The Landlord” amd reference to
the class struggle during the Cultural RevolutionCinina where
peasants were authorized to violate the human srigtit their
Landlords. In the original version of the game tplayers play
compete together against a third player, the Laddl@here are
other versions of the game involving four and fplayers but these
are less popular.

The game was only played in a few regions of Chimidl guite
recently, when versions of the game on the Intehast led to an
increase in the popularity of the game throughdw tvhole
country. Today Dou Di Zhu is played by millions mfople online,
although almost exclusively in China, with one wabseporting
1,450,000 players per hour. In addition there hbeen several
major Dou Di Zhu tournaments including one in 2088ich
attracted 200,000 players.Dou Di Zhu is interestirmm an Al
perspective as it necessitates both competitiontwémsn the
Landlord and the other two players) and cooperafiimiween the
two non-Landlord players).

3.2 Rules

Dou Di zh' uses a standard 52 card deck with the additioa o
black joker and a red joker. Suit is irrelevant I cards are
ranked with 3 being the lowest rank and 2 beinghighest rank

(higher than Ace). The jokers are ranked highen théwo, with the

red joker ranked higher than the black joker. Eplelyer is dealt a

hand of 17 cards from a shuffled deck and the neimgithree cards
are placed faced down on the table.

3.2.1 Bidding Phase

Each player takes turns to bid on their hand whith possible bids
being 1, 2 or 3 chips. Bids must be strictly higtiean the current
bid but each player has the option to pass. Thigimoes until two

of the players pass consecutively. If any playdstd chips then the

2 There are different versions of the rules of DouwzZbu. The rules used
in this work were taken from [28].

bidding phase immediately ends. If all three playiaitially pass,
the cards are shuffled and dealt again. The wiofiehe bidding
phase is designated as thandlord and this player adds the three
extra cards on the table into their hand, and pliests The winning
bid determines thstakefor the game.

3.2.2 Card Play Phase

The goal of the game is to be the first to geofidll cards in hand.
If the Landlord wins, the other two players musttepay the stake
to the Landlord. However if either of the other tplayers wins, the
Landlord pays the stake to both opponents. Thimm#a two non-
Landlord players must cooperate to beat the Laddldrhe
Landlord always plays first and then play movesiatbthe table in
a fixed direction. At the end of the game the stakdoubled if a
player has failed to remove any cards from theidha

The card play takes place in a number of rounds argtlayer
has no cards left. Whoever plays first can play group of cards
from their hand provided this group is a membeoré of the legal
move categorieésee Table 1). The next player can play a group of
cards from their hand provided this group is in sagne category
and has a higher rank than the group played bpté&egous player.
If a player has no compatible group they must paki continues
until two players pass, at which point the nextyptawins that
round and may start a new round by playing a gafugards from
any category.

There are a few special rules for some of the caieg If the
move being played is a straight run (of singlestspar trios) then
the next player must play a straight run of thees#pe and length,
ending on a higher ranked card. Straight runs certain cards of
any rank from 3 to Ace, but not cards of rank Jokers. A Bomb
or a Nuke (also known as a Rocket) may be playethatpoint but
doubles the stake of the game. A Bomb may be foliblyeanother
Bomb of higher rank but not a Quadplex.

Some categories allow extkicker cards to be played with the
group which have no effect on the category or rahkhe move
being played. A kicker can be any card provideis iof different
rank to all the cards in the main group. If thekkiccards are single
cards they must be of different rank and if thek&iccards are pairs
they must be differently ranked pairs. Also a Nalk@not be used
as a kicker. If a move with kickers is played, tiext player must
play a move in the same category with the same pumibkickers,
although the ranks of the kicker cards are ignored.

Table 1 summarises the categories of moves in DAhD.

Table 1. Description of the different move categories in Miwhu

Name Description

Solo Any individual card, for example A or 2. It is alpossible to
play runs of sequential cards with length at |&a$br
example 345678 or 89TIQKA.

Pair Any pair of identically ranked cards for example@5/7. It
is possible to play runs of sequential pairs wethgth at least
3, for example 334455 or TTJJQQKK.

Trio Any three identically ranked cards for example AAA388.
It is possible to play runs of sequential triosof length, for
example 444555 or TTTJJIQQQ. Each trio may alse hav
kicker attached, for example 444555TJ or 999QQ.

Quadplex | Any four identically ranked cards with two kickexgached,
for examples 4444TJ or 999955KK.

Bomb Any four identically ranked cards, for example 5555222.

Nuke The red joker and the black joker together.




3.3 Basic Strategy

Dou Di Zhu is a game which requires substantialewof skill from
expert human players. The player who wins the bigidbhase
usually has a high confidence they were dealt @ gwmd although
they have three extra cards to discard. Often a lsantains lower
ranked individual cards that cannot form part dfigger group and
it is possible to play these by using them as kideeds. In general
most plays should reduce the number of moves netedgelt rid of
all cards. Bombs and Nukes are powerful since tlaeybe played
at any point, but they double the stake of the gdfoe this reason
playing them early in the game is risky.

Starting a new category is a good position to heallowing a
player to choose a category where he holds muligptrips, or
holds a high-ranking group that opponents are ahlito be able to
play on. Hence inference is an important aspecba@fi Di Zhu
especially concerning the location of the high emhkcards in
opponents’ hands. The two non-landlord players aked to work
together since they either both win or both loskisTcan be
achieved by making plays that allow the other nandlord player
to play cards or prevent the Landlord from makiagtfer plays.

4 METHODOLOGY

In order to focus only on the card play phasesitpossible to
remove the bidding phase and designate that atrailyi chosen
player gets the extra cards and is the Landlord.

4.1 Perfect Information Dou Di Zhu

It is possible to modify Dou Di Zhu to be a game pHrfect
information by playing with all cards face up at @ines. This
removes the need to make inferences about othgerfgacards and
allows the exact consequences of every action tetldied when
searching the game tree. This version of the gameail Perfect
Information Dou Di Zhu

In order to compare the results of playing multigéanes of Dou
Di Zhu, we count numbers of wins instead of cumuéatewards,
ignoring the effects of player bidding and bombkéss We award
a player 1 point for winning a dealt hand and Onpoifor a loss.
Since the UCB algorithm has been well studied witivarels in
{0,1} we can benefit from the work of others in settitige
parameterk which trades off exploration and exploitation et
UCB formula (1).

4.2 Imperfect Information Dou Di Zhu

By hiding from each player the cards held in thbeotplayers’
hands during a game of Perfect Information Dou B Zve create
the game ofimperfect Information Dou Di ZhuNote that the
number of cards held by each player and the histboards played
so far are still visible to all players, only thenks of the held cards
are hidden. Since there are unknown cards, the gamdas a huge
branching factor for every possible combination aafrds each
player could hold. Instead of searching this tree apply a
determinization approach similar to the approachsBerg [4] uses
for Bridge. This involves searching multiple detamimations of the
game at each decision step. However, where Ginshees
minimax search, we use the UCT algorithm.

At each decision our agent samples multiple detg@maiions by
randomly distributing the hidden cards between dtieer players.
Each of these determinizations is a game of Petfdormation

Dou Di Zhu, to which the UCT algorithm is then appli The
actions available in the first layer of the tree tite same for each
determinization since the cards our agent holdsreysame in each
case. The visits to each action for each deteratiioiz are summed
and our agent selects the action with the highetst humber of
visits.

5 EXPERIMENTS

In the experiments described in this section we determinized

UCT, whered denotes the number of determinizations (ie.

independent search trees) amddenotes the number of UCT
iterations per determinization.

5.1 Variation in Dou Di Zhu win rates

Although the strength of decisions made by eaclyepldras a
significant effect on the outcome of a game of MiuZhu, some
random deals may favour one player over anotheereads others
may be much more sensitive to the players’ decssitm an effort
to reduce the variance of subsequent results arglalfow them to
be compared more easily, we begin by choosing afst®00 Dou

Di Zhu deals to be used for the remainder of theegrments. The
practice of specifying deck ordering in advancec@nmon in

Bridge and Whist tournaments between human plaj@msjnimise

the effect of luck when comparing players. This sktdeals is
chosen such that when played by a set of idemicabents (in this
case determinized UCT), the number of wins for @i@dar player

is as close as possible to the mean number of farnK000 random
deals. In order to choose such a set, we mustdetrmine what
that mean is.

We generated 100 sets of 1000 random Dou Di Zhisdaad
for each deal we played a single game with thréeraénized UCT
players, each withd = 50 determinizations and = 250 UCT
iterations per determinization. For each set, veended how many
of the 1000 games were won by player 1. Figure dwsha
histogram of these numbers of wins.

From these results we find that the number of vaipisears to be
normally distributed. The meangs= 433.47; thus we choose a set
of deals for which player 1 achieved exactly 43%swin this
experiment as our “representative” set for the iadex of this
paper. The standard deviation 8= 16.27 and so a 95%
confidence interval for the mean number of wins fitayer 1 is
[433.37, 433.57].



Frequency in 100 sets of games

400 408 416 424 432 440 448 456 464 472
Player 1 (landlord) wins in 1000 games

Figure 1. Histogram of win rates for the landlord playerli®O sets of 1000
Dou Di Zhu games.

5.2 Effect of d and s on playing strength

In these experiments, we played a number of gaoresach of our
1000 deals. In each game, players 2 and 3 usethdeized UCT
with 40 determinizations and 250 UCT iterations

determinization, whereas player 1 used determinl2€d with d

5.2.2 Varyings while d remains fixed

The conditions for this experiment were similarthmse for the
previous experiment, with the exception that wedixXour values of
d (namely 5, 10, 25 and 40) and variedfrom 25 to 1000). The
results are plotted in Figure 3. For< 300 the playing strength
increases logarithmically with the number of sintigias, levelling
off for s > 300.
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Figure 3. Plot of number of landlord (player 1) wins againgtber of UCT

determinizations and iterations per determinization, each gameiterations per determinization, for fixed numbefsleterminizations.

with a different value fod and/ors. For each combination af and
s, we counted how many games out of the 1000 twale won by
player 1.

5.2.1 Varyingd while s remains fixed

In this first experiment, we fixed four values fornamely 50,
100, 250 and 500. For each of these, we used aerufivalues for
d, ranging from 1 to 100.

Figure 2 plots the number of wins agaidstWe see that playing
strength increases rapidly witth < 20, with rapidly diminishing

5.2.3 Varyingd ands while ds remains fixed

Arguably the fairest comparison of the relativesgth of different
Al agents is to allocate them the same lengthroét{or the same
number of CPU cycles) to make their decisions. H@wethis is
not ideal from a scientific point of view since bumeasurements
are inherently noisy and depend on issues of imphtation and
hardware. Instead, we simulate this by allocatifixed number of
UCT iterations per decision, making the (not unreabte)
assumptions that the time for a single iteratiomoisghly constant

returns ford > 20. However, there seems to be slightly moreand the overall decision time is roughly lineartire number of

benefit to increasing the number of determinizatidoeyond 30
when the number of UCT iterations is low.

50C
450
- y —-— AN .
g 400 gy e
g 350 -
o 300 -
8 250 K )%?Z(
H T —
- W “)(
" 200
< 150 /
= —e—5 =500
100 $=250 -
50 —A&—5s =100 -
0 —>¢—35 =50
0 20 40 60 80 100

d = number of determinizations

Figure 2. Plot of number of landlord (player 1) wins againsimber of
determinizations, for fixed numbers of UCT iterager determinization.

iterations.
In this experiment we fixed four values of a const (namely
2500, 5000, 10000 and 15000), variédrom 1 to 100, and took

s = EJ for each value ofi (so thatds = X). With our current

implementation and hardwake= 10000 equates to approximately
1 CPU second of computation per move. Note thatthis
experiment (as in the preceding two experimentsygrs 2 and 3
haveds = 40 x 250 = 10000.

Figure 4 plots the number of wins for player 1 agtil. Given
the results of the preceding experiments, it is swprising that
determinized UCT is weaker whehor s is too small, nor that its
strength is somewhat independent of these parasneteen both
are sufficiently large.
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Figure 4. Plot of number of landlord (player 1) wins againsimber of
determinizations, for a fixed number of UCT simidat divided equally
among all determinizations.

5.3 Benefit of observing hidden information

As noted in Section 2.3.3, it is often useful immgs of imperfect
information to make inferences about the hidderorimition.
However, it is not always clear how useful thisergince may be.
Richards and Amir [26] demonstrate the usefulnesafefence in
Scrabble by playing an Al agent with no inferenngiee against an
Al agent with the ability to “cheat” and observeredily its
opponent’s hidden rack of letters. The benefiticdat access to the
hidden information is an upper bound on the possi@nefits of
inference.

In our experiment for Dou Di Zhu, we played two agpof Al
agent against each other in various combinatidresdeterminized
UCT player used in previous experiments (with=40 and

Table 2. The increase in numbers of wins over 1000 gamesnwhe
specified player(s) gain perfect information, arldagher player(s) have
imperfect information. For example, if player 2 hmesfect information and
players 1 and 3 have imperfect information, plagerins 86 more games
than if all three players have imperfect informatidNote that a win for
player 2 is also counted as a win for player 3,\d0€ versa.

Player(s) with Increasein number of wins
perfect infor mation (1000 games)
Player 1 69
Player 2 86
Player 3 119
Players 2 and 3 210

90C
800 +
700
600
500
400 -
300 -
200 -
100 -

BPerfect information @Imperfect information

Z

N

Wins in 1000 games

NN
DN

Player 1 Player 2 Player 3 Players2 &3
Figure 5. Number of wins for players with perfect versus érfpct
information. Each pair of bars shows the numberwio for the specified
player(s) when they have perfect or imperfect imfation and all other
players have imperfect information.

6 CONCLUSION

s=250) and a perfect information player in which the 40!n this paper we presented the hugely popular Chiwesd game

determinizations are replaced by 40 copies of thesh state of the
game. (This player still uses multiple UCT treeg, &lutrees have
the same root state, which is the actual state hef game).
Specifically, we take as a baseline the number inEwhen each
player uses determinized UCT (i.e. has only imperifgormation)

and measure the increase in numbers of wins wheousaplayers
instead use perfect information.

Table 2 and Figure 5 show the results of this ermpart. We see
that knowledge of the other players’ hidden camisrdases the
number of wins by around 7-12% (the benefit apptalse slightly
less for the landlord, and slightly greater for thlayer preceding
the landlord). Furthermore, if both non-landlordy#rs can observe
the hidden information, their win rate increasestyund 21%.

When all three players have perfect informatiomaypfs 2 and 3
win 12.7% more games than if all three have impeifgformation.
This suggests that perfect information is more beiaéto the non-
landlord players than to the landlord.

Dou Di Zhu as an interesting game for investigatidfe applied a
determinization approach using the UCT algorithnséarch each
determinization. Although we have yet to accuratigyermine the
playing strength of the resulting Al agent (notskedue to the lack
of other strong Al for Dou Di Zhu against which test) our
informal experiments (playing against this papawishors) suggest
that it is on a par with human players. The natfr®ou Di Zhu
suggests that the effects of some of the problenith w
determinization outlined in Section 2.3.1, are kellf to be major:
in particular, strategies such as information hgdor bluffing do
not generally play an important role.

We showed that the performance of determinized UWCTot
particularly sensitive to the trade-off between thember of
determinizations and the number of UCT iterationgr p
determinization. When the number of determinizatios fixed,
performance scales approximately logarithmicallyhwiespect to
the number of UCT iterations; when the number ofusations is
fixed, performance increases rapidly with the numbeaf
determinizations until some threshold (approximat2D in our
experiments) is reached, after which increasing nibenber of
determinizations does not significantly increasee tplaying
strength. We do not see any obvious reason whyethesults
should be specific to Dou Di Zhu; however we planrgpeat these
experiments for other stochastic games of impeifdormation to
investigate this further.

We have shown that the increase in playing strefirgtim an
accurate inference engine is potentially large. ©heur future



aims is to find an inference method for Dou Di Zhat achieves
some of this increase. Conceptually, it is easy amhine an

inference model

with determinization: instead ofmpéing

determinizations at random, use determinizatioas tie inference
model identifies as being close to the actual s@te next step is to
design an inference model that can identify su¢brdgnizations.
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