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Abstract

Monte Carlo Tree Search (MCTS) has produced many breakthroughs in search-
based decision-making in games and other domains. There exist many general-
purpose enhancements for MCTS, which improve its efficiency and effective-
ness by learning information from one part of the search space and using it to
guide the search in other parts. We introduce the Information Capture And
ReUse Strategy (ICARUS) framework for describing and combining such en-
hancements. We demonstrate the ICARUS framework’s usefulness as a frame
of reference for understanding existing enhancements, combining them, and de-
signing new ones.

We also use ICARUS to adapt some well-known MCTS enhancements (origi-
nally designed for games of perfect information) to handle information asymme-
try between players and randomness, features which can make decision-making
much more difficult. We also introduce a new enhancement designed within the
ICARUS framework, EPisodic Information Capture and reuse (EPIC), designed
to exploit the episodic nature of many games. Empirically we demonstrate that
EPIC is stronger and more robust than existing enhancements in a variety of
game domains, thus validating ICARUS as a powerful tool for enhancement
design within MCTS.

Keywords: Game tree search, hidden information, information reuse, machine
learning, Monte Carlo Tree Search (MCTS), uncertainty

1. Introduction

Monte Carlo Tree Search (MCTS) is a decision tree search algorithm that has
produced a huge leap in AI player strength for a range of two-player zero-sum
games and proven effective in a wide range of games and decision problems [1]. In
particular, MCTS is effective when it is difficult to evaluate non-terminal states
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so that traditional depth-limited search methods perform poorly. For example,
MCTS has advanced the state of the art in computer Go from the level of weak
amateur to approach that of professional players in only a few years [2, 3]. MCTS
has also produced state-of-the-art performance in many other domains, with
over 250 papers published since the algorithm’s invention in 2006 [1]. MCTS
shows promise in real-time games, being the basis of winning competition entries
for both Ms. Pac-Man [4] and the Physical Travelling Salesman Problem [5].

Generally speaking, MCTS algorithms heuristically build an asymmetric
partial search tree by applying machine learning, using the weak reward sig-
nal given by randomly simulating a playout to the end of the game from nodes
representing intermediate positions. The tree is descended by recursively apply-
ing a multi-armed bandit formula (such as UCB1 [6]) to each tree node’s counts
of simulation wins and visits.

While MCTS has provided effective and even state-of-the-art decision-making
in its “vanilla” form (particularly UCT [7]), it is often enhanced [1]. Some of
these enhancements incorporate external knowledge into the search, whereas
others are general purpose enhancements which can be applied to any domain
without specific knowledge. In some cases these enhancements are crucial as-
pects of successful MCTS programs, for example the RAVE enhancement [8]
used in champion Go [9] and Hex [10] programs. In vanilla MCTS, the only
information retained from a playout is the terminal reward, and the only use
for that information is to update the nodes visited during the playout. Many
enhancements aim to extract more data from each playout and spread the in-
fluence of that data across more of the search tree, thus increasing the value of
each playout.

In this work we investigate the use of general purpose enhancements to im-
prove the performance of MCTS. In some games1 a move that is good in one
state may be good in other similar states, and we argue that general purpose
MCTS enhancements improve the performance of the algorithm by exploiting
opportunities for learning in these situations. The enhancements in this paper
bootstrap the learning of whether states and actions are good or bad by using
analogy with similar states and actions elsewhere in the search tree. A sub-
stantial contribution of this work is to develop a framework which formalises
the correlation between states and actions, and the effects that this has on the
tree and default policies of MCTS. Further, we develop and empirically inves-
tigate combination operators for MCTS enhancements, and show how we can
use our framework and operators to understand, categorise and invent new en-
hancements. Hence we can explain the effectiveness of MCTS enhancements by
understanding how information is shared between states and actions and how
this information is used to improve the MCTS selection and simulation policies.
Additionally we show that enhancements developed for games of perfect infor-
mation (where the state is fully observable to all players and state transitions

1The word games in this paper includes multiplayer games, single player puzzles and
decision problems, although most work to date is on two-player noncooperative games.
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are deterministic) can also be effective in games of imperfect information (where
the state is partially observable with different observations for different players,
and state transitions may be stochastic).

The framework in this paper aims to unify MCTS and its various enhance-
ments, whereas other authors have sought to unify MCTS and related search
techniques. Keller and Helmert [11] propose a framework for finite horizon
Markov decision processes (i.e. single-player games). This framework can ex-
press UCT as well as other heuristic search and dynamic programming tech-
niques. By interchanging the component parts of the methods within the frame-
work, new methods are derived. Maes et al [12] define a grammar over Monte
Carlo search algorithms for single-player games (including UCT and Nested
Monte Carlo Search [13]), and use this to evolve new algorithms. Saffidine [14]
presents a framework for “best first search” methods in two-player games, which
encompasses methods such as MCTS-Solver [15] and Proof-Number Search [16]
and guarantees that methods expressible in this framework must converge to
the minimax solution of the game.

The idea of enhancing an algorithm to better capture and reuse informa-
tion as it executes is used in a number of search and learning algorithms. The
efficiency of the α–β pruning strategy in minimax search is largely dependent
on the order in which actions are visited in the tree [17]. Enhancements such
as the killer heuristic [18], history heuristic [19] and iterative deepening [20]
use information gathered during the search to refine this ordering as the search
progresses. Even α–β pruning itself can be seen as an information reuse en-
hancement, as it uses information gathered in one part of the tree to influence
the search in other parts (specifically, to prune other parts entirely). Machine
learning algorithms can also bootstrap learning through reuse. In transfer learn-
ing [21] or lifelong learning [22], the learner uses information learned from pre-
vious problems to bootstrap learning for the present problem. In multitask
learning [23], the system learns to solve several problems in parallel. In both
cases the system can be thought of as “learning to learn”, thus these approaches
are often termed meta-learning [24]. Typically meta-learning systems work by
learning reusable features or representations, or by adjusting the parameters of
an underlying learning algorithm. Although the actual methods used are dif-
ferent, the idea of a learning system acquiring knowledge over its lifetime as it
is confronted by different problems is similar to the idea of a tree search algo-
rithm transferring knowledge from one part of the game tree to another over
the “lifetime” of a single search.

Most general purpose MCTS enhancements derive knowledge by comparing
and combining simulations from different states. We show that these general
purpose enhancements do not always work and are sometimes detrimental to
the performance of MCTS, adding to existing observations that certain en-
hancements which are effective in some domains fail to provide any benefit in
other domains (e.g. [25, 26]). The most effective enhancements correctly identify
which states have correlated action values. This suggests that even if a general
purpose enhancement is knowledge-free, there is implicit knowledge contained
in the AI designer’s decision of whether or not to use that enhancement.
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As well as letting us choose between existing enhancements, consideration
of correlated states allows us to design entirely new enhancements. In this
paper we present a new enhancement, EPisodic Information Capture and reuse
(EPIC), that was designed by considering correlation between states in the
card game Dou Di Zhu. Dou Di Zhu has an episodic structure, where a game
consists of a sequence of somewhat independent rounds, and EPIC is designed
to correlate states in analogous positions within different episodes. Many games
have an episodic structure, and we demonstrate that EPIC is an effective general
purpose enhancement for other games.

Capturing information in the correct way is important, but reusing it in the
correct way is equally crucial. Our framework separates reuse from capture,
enabling us to study the effectiveness of different information reuse techniques.
In [27] we show that the precise information reuse method has an impact on the
performance of an enhancement, and in particular we show that policies designed
to balance exploitation and exploration, such as ε-greedy and UCB1 [6], produce
strong simulation policies. In the case of UCB1, this leads to an elegant MCTS
algorithm which uses a bandit algorithm to select all moves in the playout,
where in the MCTS tree the action value estimates correspond to information
about a single state and in simulations the action value estimates correspond to
information reused between many states. Thus the only difference between the
“in tree” (selection) and “out of tree” (simulation) modes of MCTS is whether
the context in which the bandit algorithm executes is specific to a single state
or general across a larger collection of states.

The structure of this paper is as follows. In Section 2 we give a brief overview
of MCTS, and Section 3 introduces the definitions and notations we use through-
out the paper. In Section 4 we define the ICARUS framework and show that
many existing MCTS enhancements can be defined within this framework. We
cast the best-known MCTS enhancements in this framework, adapting them to
games of imperfect information in the process, and consider operators which al-
low us to combine information reuse enhancements. In Section 5 we define a new
enhancement, EPisodic Information Capture and reuse (EPIC), which captures
information in such a way as to exploit the episodic nature of the search tree. In
Section 6 we use the ICARUS framework to identify similarities and differences
between enhancements. In particular we argue that MCTS enhancements differ
in two ways: how information is captured, and how the captured information
is reused within the MCTS algorithm. Section 7 introduces the three games we
use in this paper as experimental domains, and Section 8 empirically compares
the performance in these domains of EPIC and existing enhancements from the
literature, studying a wide range of combinations using our ICARUS combina-
tion operators. Finally Section 9 gives some concluding remarks and directions
for future work.
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2. Monte Carlo Tree Search (MCTS)

2.1. The MCTS algorithm

Monte Carlo Tree Search (MCTS) is a class of decision tree search algorithms
discovered independently by several authors [28, 7, 29]. The most common
MCTS implementations are based on the UCT algorithm [7], although there
are many different versions of the algorithm [1]. MCTS builds a search tree
iteratively where on each iteration the following four steps are performed:

1. Selection: The tree policy (often UCB1 [6]) is used to descend the existing
search tree (the “tree search” in MCTS).

2. Expansion: A child of the final selected node is added, if possible.

3. Simulation: A simulation is run to estimate the outcome of the game.
Typically this is done by playing random actions from the position reached
during selection/expansion, until the end of the game (the “Monte Carlo”
in MCTS).

4. Backpropagation: The result of the simulation is used to update all nodes
visited during selection and expansion.

We refer collectively to the selection, expansion and simulation stages as the
playout. The playout can be seen as a sequence of actions from the current
(root) state to a terminal state.

2.2. Information Set MCTS

Information Set MCTS (ISMCTS) is a variant of MCTS that handles im-
perfect information [30, 31]. This is achieved by building a tree of information
sets (sets of states indistinguishable from one player’s view point) rather than
individual states, and dealing with the increased branching factor by restricting
each MCTS iteration to a random determinization (a state sampled at random
from the current information set). In this paper we use the MO-ISMCTS ver-
sion of the algorithm, which deals with games that have partially observable
moves by constructing a separate search tree (a “projection” of the underlying
game tree) to reflect each player’s observation of the game.

Each ISMCTS iteration uses a different determinization, and restricts selec-
tion and expansion to actions legal in that determinization. This leads to the
subset-armed bandit problem: the set of children available for selection can differ
between visits to the same node. To avoid over-exploration of “rare” children
(corresponding to actions that are legal in relatively few determinizations), we
use as the number of trials in the UCB1 formula the number of times the action
was available for selection, rather than the number of times the parent node was
visited [30].

ISMCTS is an effective algorithm for handling imperfect information, pro-
ducing strong play and outperforming other determinization-based approaches [30].
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In particular it overcomes the problem of strategy fusion, where a simpler ap-
proach incorrectly assumes it can tailor its future strategy to the opponent’s
private information [32, 33]. MCTS approaches combined with determiniza-
tion have proven successful in games such as Klondike Solitaire [34], Skat [35]
and Kriegspiel [36], as well as in General Game Playing for games of imperfect
information [37].

3. Definitions and notation

For a set X, a sequence over X is written as 〈x1, . . . , xn〉 for xi ∈ X. The
empty sequence is denoted 〈〉. The set of all sequences over X is denoted X∗.
The concatenation of two sequences x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 is
x ++ y = 〈x1, . . . , xn, y1, . . . , yn〉. We also use the concatenation operator for
prepending or appending single elements to a sequence, for example x++xn+1 =
〈x1, . . . , xn, xn+1〉 for xn+1 ∈ X.

Let X be a set and let ∼ be an equivalence relation on X. Then [x]∼ is the
∼-class of x ∈ X, and X/∼ is the set of all ∼-classes.

We now describe our terminology and notation for games. The notation is
described in more detail in [30], and more detail on the concepts behind it can
be found in [38] or other standard textbooks on game theory.

Definition 1. A game is defined by the following elements:

• (S,Λ) is a finite nonempty directed graph, with S the set of states and Λ
the set of state transitions;

• s0 ∈ S is the initial state;

• κ ∈ N is the number of players;

• µ : ST → Rκ is the utility function, where ST ⊆ S is the set of terminal
states

• ρ : S → {0, 1, . . . , κ} defines the player about to act in each state;

• π0 : Λ→ [0, 1], where for all r ∈ S with ρ(r) = 0 we have
∑
s : (r,s)∈Λ π0(r, s) =

1, is the environment policy ;

• ∼i, for each player i = 0, 1, . . . , κ, is an equivalence relation on S, whose
classes are player i’s information sets;

• ^i, for each player i = 0, 1, . . . , κ, is an equivalence relation on Λ, whose
classes are moves as observed by player i, such that for all q, r, s ∈ S,
(q, r) ^ρ(q) (q, s) implies r = s.

A game can be described as a sequential decision problem, where the players
collectively choose a path through (S,Λ) from s0 to a terminal state. When
the current state is st, player ρ(st) chooses an edge (st, st+1) and the process
continues from state st+1. If ρ(st) = 0 then the edge is instead selected according
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to the probability distribution induced by π0; this models chance events such as
dice rolls or card deals. In practice the players do not choose edges but actions:
these are moves from the point of view of the moving player, and represent sets
of analogous edges from different states (e.g. the set of edges that correspond
to playing the card Q♠ from all states in which that is legal).

In a game of imperfect information, players do not observe the current state
but observe the information set that contains it. Likewise they do not observe
state transitions or actions but moves. (Note the distinction between state
transitions, actions and moves in this paper: a player chooses an action, which
induces a state transition, and the other players observe a move.) An informa-
tion set consists of all states that are indistinguishable from the player’s point of
view; a move consists of all actions that are indistinguishable from the player’s
point of view. Thus a player’s choices of action can depend only on the in-
formation sets and moves that he observes, not on the underlying states and
actions.

Definition 2. Consider a game Γ, a state s and a player i. The set of legal
moves from state s from player i’s point of view is

Mi(s) = {[(s, u)]
^i : (s, u) ∈ Λ} . (1)

The set of all moves from player i’s point of view is the set of all moves legal
in at least one state:

Mi = Λ/^i =
⋃
s∈S

Mi(s) . (2)

The set of all moves is the set of all moves from all players’ points of view:

M =
⋃

i=1,...,κ

Mi . (3)

The set of legal actions from s is

A(s) = Mρ(s)(s) , (4)

i.e. the set of legal moves from the point of view of the player about to act. The
set of all actions is the set of all actions legal in at least one state:

A =
⋃
s∈S

A(s) . (5)

Let B = {(s, a) : s ∈ S, a ∈ A(s)}, the set of all pairs of states and their legal
actions. The transition function for Γ is the function f : B → S such that given
s ∈ S, we have that ∀a ∈ A(s), (s, s′) ∈ a⇒ f(s, a) = s′. In other words: f(s, a)
is the state reached by starting from s and traversing the edge corresponding
to a; f(s, a) is the state resulting from performing action a in state s.
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Definition 3. An action history2 from state s is a sequence of actions 〈a1, . . . , an〉 ∈
A∗, such that

a1 ∈ A(s) (6)

a2 ∈ A(f(s, a1)) (7)

a3 ∈ A(f(f(s, a1), a2)) (8)

... (9)

an ∈ A(f(. . . (f(s, a1), . . . ), an−1)) . (10)

Denote the set of all action histories from s by H(s). Extend the transition
function f to operate on action histories by defining

f(s, 〈〉) = s (11)

f(s, 〈a1, . . . , an〉) = f(f(s, 〈a1, . . . , an−1〉), an) . (12)

An action history h is terminal if f(s,h) is a terminal state. Denote the set of
terminal action histories from s by HT (s).

Definition 4. A move history for player i from state s is a sequence of moves
from player i’s point of view, 〈[a1]

^i , . . . , [an]
^i〉 ∈ M∗i , where 〈a1, . . . , an〉

is an action history from s. Denote the set of all move histories for player i
from s by H^

i (s), and the set of all move histories for all players by H^(s). If
h = 〈a1, . . . , an〉 is an action history then the corresponding move history from
player i’s point of view is denoted [h]^i . Let ρ = ρ(f(s, 〈a1, . . . , an−1〉)), so ρ is
the player who played the last action an in the history. Then the move history
from player ρ’s point of view is denoted by omission of the player number, i.e.
[h]^.

Tree search algorithms operate on trees of histories. The history at a node
is precisely the sequence of moves or actions that label the edges from the root
to that node. Perfect information MCTS operates on trees of action histories,
whereas MO-ISMCTS operates on trees of move histories.

4. Information Capture And ReUse Strategies (ICARUSes)

An Information Capture And ReUse Strategy (ICARUS) is an enhancement
to MCTS that collects information from visits to one area of the game tree and
uses that information to inform the future policy in other areas. The ICARUS
framework introduced in this section allows us to define and analyse such en-
hancements and their combinations in an instructive, formal and consistent way.
Furthermore, the framework is generic enough to be able to express any kind

2Note that a history from state s begins, not ends, at state s. If we consider s to be the
current point in time, a “history” could more correctly be called a “future”.
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of information reuse enhancement (for example consulting an oracle of arbi-
trary complexity is permitted), but imposes a structure on how information
is captured and used. This allows the structure of different enhancements to
be easily compared, and provides useful pointers towards the design of future
enhancements.

4.1. Defining ICARUSes

The sharing of information between different parts of the tree is facilitated
by records. These can be any objects. During the search, each record has a piece
of information associated. The piece of information can also be any object; for
example, it may be a tuple of numbers representing rewards and visit counts.
The ICARUS defines three functions: the policy function specifying how the
information is used during each MCTS playout, the capture function specifying
which records are to be updated in response to the playout, and the backprop-
agation function specifying how each record’s information is updated. This is
similar to reinforcement learning, where the policy function is to be optimised,
playouts provide a performance measure and the capture and backpropagation
functions define a learning mechanism. Depending on the enhancement, records
can be updated for different reasons: for example some records may be updated
because they were selected, and others because they were available for selection
but not actually selected. We use capture contexts to communicate this between
the capture function and the backpropagation function.

Definition 5. Given a game as defined in Section 3, an information capture
and reuse strategy (ICARUS) is a 7-tuple (R,Θ, θinitial, α,Ψ, ξ, ω) where

1. R is a nonempty set of records. The elements of R can be any objects.

2. Θ is a nonempty set, the information domain. The elements of Θ can be
any objects.

3. θinitial : R→ Θ is the initial information function, which maps each record
to a piece of information.

4. α : M∗×(R→ Θ)×2A → (A→ [0, 1]) is the policy function. This function
takes three arguments (the current move history, the current mapping of
records to information, and the legal action set for the current state) and
returns a probability distribution over the action set. The same function
α is used during selection and simulation phases of the playout.

5. Ψ is a nonempty set of capture contexts. The elements of Ψ can be any
objects, and are used to communicate contextual information between ξ
and ω defined below.

6. ξ : S × M∗ → (R × Ψ)∗ is the capture function. This function takes
two arguments (the root game state and the current move history) and
maps them to a sequence of (record, capture context) pairs which are to
be updated following a playout. The capture function returns a sequence

9



rather than a set to allow the same record to be updated more than once
for the playout, and to specify the order of updates with different contexts
in cases where this matters.

7. ω : Θ × Ψ × Rκ → Θ is the backpropagation function. This function
takes three arguments (the current information for a record, the capture
context specified by the capture function, and the reward vector from the
simulation) and returns the new information for the record following a
playout.

Algorithm 1 shows an MCTS algorithm using ICARUS to choose the best
action from information set Iroot. The algorithm begins by initialising the infor-
mation associated with each record (lines 2–4); however, a practical implemen-
tation would initialise these values lazily as and when they are needed. Each
iteration begins at the root node corresponding to the empty history (line 7),
and samples a determinization (state) sroot from the root information set (line 8)
which becomes the current state s for this iteration (line 9).

Each step of the playout uses the policy function α to choose an action a,
depending on the current move history [h]^ρ(s) for the player about to act from
state s, the current information mapping θ, and the set of available actions A(s)
(line 11). The current history h is updated by appending a, and the current
state s is updated by applying a.

After the playout has reached a terminal state, the capture function is ap-
plied to the root determinization sroot and the terminal history h to obtain
the sequence of (record, context) pairs to be updated (line 16). For each of
these pairs, the backpropagation function ω is used to update the information
associated with the record (line 17).

The experimental domains in this paper are games of imperfect information,
thus Algorithm 1 is designed to handle imperfect information using the approach
of Information Set MCTS [30]. However it is equally applicable to games of
perfect information. In this case the information set Iroot is a singleton {sroot}
and line 8 can be omitted.

4.2. Baseline ICARUS definition

Specification 1 describes the baseline ICARUS definition used by an un-
enhanced search algorithm, defining the functions used in Algorithm 1. The
resulting algorithm is equivalent to UCT [7] in the perfect information case and
MO-ISMCTS with the UCB1 selection policy [30] in the imperfect information
case. The algorithm uses reward vectors and assumes that each player tries to
maximise his own reward in a maxn fashion [39, 40], thus the algorithm can
handle games with κ > 2 players as well as single-player and two-player games.

Each history has its own record (Base-1), and the information associated
with a record is a total reward, a number of visits and an availability count
(Base-2, Base-3). The policy is defined to use the subset-armed UCB1 algo-
rithm (Base-4). During expansion all unexpanded actions have n = 0 and thus
UCB1 value ∞, and so the policy chooses between them uniformly. Similarly
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Algorithm 1 The MCTS algorithm using ICARUS. The algorithm takes an
information set Iroot as input and returns a legal action from that information
set.

1: function MCTS(Iroot ∈ S/ ∼i)
2: // Initialisation
3: for each record r do
4: θ(r) = θinitial(r)

5: for many iterations do
6: // Playout
7: h← 〈〉
8: choose sroot ∈ Iroot uniformly at random
9: s← sroot

10: repeat
11: choose a ∈ A(s) with probability α([h]^ρ(s) , θ, A(s))(a)
12: h← h++ a
13: s← f(s, a)
14: until s is terminal

15: // Backpropagation
16: for each (r, ψ) ∈ ξ(sroot,h) do
17: θ(r)← ω (θ(r), ψ, µ(s))

18: return the a ∈ A(Iroot) that was selected most often from the root
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Rbase = M∗ (Base-1)

Θbase = Rκ × N0 × N0 (Base-2)

θbase
initial(h) = (0, 0, 0) (Base-3)

αbase(h, θ, As) = U
[
arg max
a∈As

v(θ([h++ a]^))

]
(Base-4)

where v((q, n,m)) =

qρn + c

√
log(m)

n
if n > 0 and m > 0

+∞ if n = 0 or m = 0

where qρ is the component of q corresponding to the player about to act at the
end of h

Ψbase = {ψavail, ψvisit} (Base-5)

ξbase(s, 〈a1, . . . , at〉) = 〈([〈a1, . . . , ai〉]^, ψvisit) : 0 ≤ i ≤ te〉
++ 〈([〈a1, . . . , ai−1, a〉]^, ψavail) : 0 < i ≤ te,

a ∈ A(f(s, 〈a1, . . . , ai−1〉)), a 6= ai〉 (Base-6)

where te is minimal such that θ([〈a1, . . . , ate〉]^) = (q, 0,m) for some q,m, or
te = t if no such te exists

ωbase((q, n,m), ψ,µ) =

{
(q + µ, n+ 1,m+ 1) if ψ = ψvisit

(q, n,m+ 1) if ψ = ψavail

(Base-7)

where q denotes the total reward, n denotes the number of visits and m denotes
the availability count.

Specification 1: The baseline ICARUS definition
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during simulation, all actions have UCB1 value∞ and so the simulation policy is
uniform random. The capture function specifies that the records to be updated
during backpropagation are those that were selected, and those that were avail-
able to be selected due to being compatible with the current determinization;
this is restricted to the portion of the playout corresponding to selection and
expansion, i.e. the first te actions (Base-6). These two collections of records are
labelled with contexts ψvisit and ψavail respectively (Base-5). Selected records
have their rewards, visits and availabilities updated in the natural way: the sim-
ulation reward is added to the record’s total reward, and the visit and availabil-
ity counts are incremented by 1. Available records have their availability count
incremented by 1, with reward and visit count remaining unchanged (Base-7).

Many ICARUSes apply different policies during selection, expansion and
simulation. Let θbase

n denote the visit count component of θbase, i.e. θbase
n ([h]^)

denotes the number of visits to history [h]^. A history h with available action
set As is said to be

• a selection node if θbase
n ([h]^) > 0 and θbase

n ([h++ a]^) > 0 for all a ∈ As;

• an expansion node if θbase
n ([h]^) > 0 but θbase

n ([h++ a]^) = 0 for at least
one a ∈ As;

• a simulation node if θbase
n ([h]^) = 0.

It is important to note that when this terminology is used in the definitions of
ICARUSes, it always relates to the baseline statistics and not to the information
maintained by the ICARUS itself.

4.3. Enhancements in the ICARUS framework

This section casts some well-known information reuse enhancements from
the literature into the ICARUS framework.

4.3.1. All moves as first (AMAF)

The all moves as first (AMAF) heuristic was introduced by Brügmann [41]
in the context of Monte Carlo methods for Go, and was first combined with
MCTS by Gelly and Silver [8] and independently by Drake and Uurtamo [42].
The underlying idea is that the value of an action is somewhat independent of
the time at which it is played. This time independence is particularly true for
games with pieces that rarely or never move once played, such as Go and Hex.
AMAF and its variants have proven highly successful in these [3, 10] and other
similar games. AMAF updates statistics for each action in the playout not just
at the point when that action was played, but also at all earlier points when the
action could legally have been played.

Specification 2 formulates AMAF in the ICARUS framework. Each history
has its own record (AMAF-1), and the information associated with a record is
a total reward and a number of visits (AMAF-2, AMAF-3). The policy uses
a UCB1 formula based on the AMAF information (AMAF-4), here using as
the number of trials the sum of visit counts for all currently available actions.
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R = M∗ (AMAF-1)

Θ = Rκ × N0 (AMAF-2)

θinitial(h) = (0, 0) (AMAF-3)

α(h, θ, As) = U
[
arg max
a∈As

v(θ([h++ a]^))

]
(AMAF-4)

where v((q, n)) =


qρ
n

+ cAMAF

√
log
(∑

b∈As θ2([h++ b]^)
)

n
if n > 0

+∞ if n = 0

where θ2 denotes the component of θ in N0

Ψ = {ψ} (AMAF-5)

ξ(s, 〈a1, . . . , at〉) = 〈(〈a1, . . . , ai−1, aj〉 , ψ) : 0 ≤ i < j ≤ t,
aj ∈ A(f(s, 〈a1, . . . , ai−1〉))
and 〈a1, . . . , ai〉 is a selection node〉 (AMAF-6)

ω((q, n), ψ,µ) = (q + µ, n+ 1) (AMAF-7)

Specification 2: All moves as first (AMAF)

The capture function specifies that the nodes to be updated are those siblings
of nodes visited during tree descent that correspond to actions played later
in the playout (AMAF-6). This is the key property of the AMAF algorithm.
Backpropagation updates the rewards and visits in the natural way (AMAF-7),
and does not require any contextual information (AMAF-5).

One well-known variant of AMAF is rapid action value estimation (RAVE) [8,
3], in which the influence of the AMAF value decays the more a node is vis-
ited. In Section 4.4 we define composition operators on ICARUSes, and express
RAVE as a composition of baseline and AMAF ICARUSes.

4.3.2. Move-average sampling technique (MAST)

Move-average sampling technique (MAST)3 was introduced by Finnsson and
Björnsson [43] and used in their CadiaPlayer general game player [44]. The
idea is to maintain average reward statistics for each action independently of
where it occurs in the game tree, and use these statistics to bias the simulation
policy.

MAST is defined in Specification 3. There is a record for each combination
of an action and a player who plays that action (MAST-1). The information
associated with a record is a total (scalar) reward and a visit count (MAST-
2, MAST-3). The policy selects actions according to a Gibbs distribution, using

3What Finnsson and Björnsson [43] call “moves” are “actions” in our terminology.
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R = A× {1, . . . , κ} (MAST-1)

Θ = R× N0 (MAST-2)

θinitial(a, i) = (0, 0) (MAST-3)

α(〈a1, . . . , at〉 , θ, As)(a) =
ev(a)/τ∑
b∈As e

v(b)/τ
(MAST-4)

where v(a) =

{
q
n if n > 0

1 if n = 0
for θ(a, ρn) = (q, n)

where ρi = ρ(f(s, 〈a1, . . . , ai〉))
Ψ = {1, . . . , κ} (MAST-5)

ξ(s, 〈a1, . . . , at〉) = 〈(ai, ρi) : i = 1, . . . , t〉 (MAST-6)

ω((q, n), ρ, (µ1, . . . , µκ)) = (q + µρ, n+ 1) (MAST-7)

Specification 3: Move-average sampling technique (MAST)

the average reward calculated from the total reward and visit count (MAST-4).
Backpropagation updates the records associated with the actions played during
the playout (MAST-6), with the player who played each action as contextual
information (MAST-5). The total reward and number of visits are updated in
the natural way (MAST-7). If the same (action, player) pair appears more than
once in the playout, it is updated more than once during backpropagation.

This formulation of MAST applies the same policy throughout the playout,
whereas [43] applies the Gibbs policy during expansion and simulation only.
This behaviour can be implemented within the ICARUS framework by use of
composition operators (Section 4.4).

In its original formulation, MAST uses a policy based on a Gibbs distribu-
tion. Tak et al [45] propose instead using an ε-greedy policy, i.e. replacing the
policy function in Specification 3 with

α(〈a1, . . . , at〉 , θ, As)(a) = εU [As] + (1− ε)U
[
arg max
b∈As

v(b)

]
(MAST-ε-greedy-4)

for a constant ε. With probability ε this policy chooses uniformly over all
available actions; with probability 1 − ε it chooses uniformly over the actions
whose average value is maximal.

Another possibility is to use a roulette wheel policy, in which the probability
for each move is proportional to its average reward:

α(〈a1, . . . , at〉 , θ, As)(a) =
v(a)∑
b∈As v(b)

(MAST-Roulette-4)
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Yet another possibility is to use a bandit policy such as UCB1, requiring
us to keep track of availability counts for each action and update these during
backpropagation.

4.3.3. Variants of MAST

Finnsson and Björnsson [46] describe a variant of MAST called tree-only
MAST (TO-MAST), in which only statistics for the actions played during se-
lection and expansion (i.e. not during simulation) are updated. This can be
defined by modifying the capture function of Specification 3:

ξ(s, 〈a1, . . . , at〉) = 〈(ai, ρi) : i = 1, . . . , t (TO-MAST-6)

and 〈a1, . . . , ai〉 is a selection or expansion node〉

Finnsson and Björnsson [46] describe two refinements of MAST to enable
embedding of domain specific knowledge. In predicate-average sampling tech-
nique (PAST), states are labelled using a list of predicates; instead of maintain-
ing average rewards for actions, rewards are maintained for (predicate, action)
pairs consisting of a predicate that holds in a state and the action played from
that state. PAST can be represented in the ICARUS framework by modifying
Specification 3, including the predicate as an element of the record tuple and
modifying the policy and capture functions to take predicates into account.

The second refinement is features-to-action sampling technique (FAST). This
uses the TD(λ) temporal difference learning algorithm to learn a value function
for actions, both offline before the search begins and online based on the MCTS
playouts. In the ICARUS framework, the values learned offline can be encoded
in the initial information function θinitial, and the online learning by embedding
TD(λ) in the backpropagation function ω.

4.3.4. Last good reply (LGR)

Last good reply (LGR) is a simulation policy introduced by Drake [47]. When
playing a game, each action can be thought of as a reply to the opponent’s pre-
vious move. If the replying player goes on to win the game, this gives us some
evidence that the reply was good. LGR records good replies from MCTS play-
outs; during simulation, if a good reply is recorded for the previous move then
it is played deterministically. LGR has been shown to improve the performance
of MCTS for Go [47, 48], Havannah [49] and General Game Playing [45].

Specification 4 gives LGR as an ICARUS. Each record specifies a move
to be replied to, and the player making the reply (LGR-1). The information
associated with a record is the last good action played in reply to that move
by that player, or ⊥ /∈ A if no reply has yet been recorded (LGR-2, LGR-3).
The policy examines the most recent move [at]

^ρt from the point of view of
the player about to act ρt. If a reply has been recorded, and that reply is
compatible with the current determinization, then it is played. Otherwise, a
legal action is chosen uniformly at random (LGR-4). During backpropagation,
the records updated are those corresponding to the actions in the playout, each
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R = M × {1, . . . , κ} (LGR-1)

Θ = A ∪ {⊥} (LGR-2)

θinitial(m, i) = ⊥ (LGR-3)

α(〈a1, . . . , at〉 , θ, As)(a) =


U [As]

if θ ([at]
^ρt , ρt) = ⊥

or θ ([at]
^ρt , ρt) /∈ As

1 if θ ([at]
^ρt , ρt) = a

0 otherwise

(LGR-4)

where ρi = ρ(f(s, 〈a1, . . . , ai〉))
Ψ = A× {1, . . . , κ} (LGR-5)

ξ(s, 〈a1, . . . , at〉) = 〈(([ai]^ρi , ρi), (ai+1, ρi)) : i = 1, . . . , t− 1〉
(LGR-6)

ω(aold, (anew, ρ),µ) =

{
anew if µρ > 0

aold if µρ ≤ 0
(LGR-7)

Specification 4: Last good reply (LGR)

action observed from the point of view of the player immediately following it
(LGR-6). The context specifies the action with which that player replied, as
well as the identity of the player (LGR-5). If the player won the simulated game
(i.e. achieved a reward greater than zero), the action is recorded as the last good
reply; if not, the existing information is retained (LGR-7).

In [47], the reply information is used only during simulation, whereas Spec-
ification 4 has it used for the entire playout. This is likely to be very weak.
However we define it in this way so that the stage at which the reply informa-
tion is used can be specified naturally by composition operators (Section 4.4)
rather than as a part of the ICARUS itself.

Baier and Drake [48] describe a variant of LGR called last good reply with
forgetting (LGRF), in which replies that led to a loss are deleted from the reply
table. Specification 4 can be modified to describe LGRF simply by modifying
the backpropagation function:

ω(aold, (anew, ρ),µ) =


anew if µρ > 0

⊥ if aold = anew and µρ ≤ 0

aold otherwise

(LGRF-7)

4.3.5. n-gram average sampling technique (NAST)

n-gram average sampling technique (NAST) was introduced by Powley et
al [27], based on previous work by Stankiewicz et al [49] and Tak et al [45].
NAST generalises the notion of MAST: instead of learning values for single
moves, NAST learns values for sequences of consecutive moves (indeed, MAST
can be thought of as the N = 1 case for NAST).
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R = Mn × {1, . . . , κ} (NAST-1)

Θ = R× N0 (NAST-2)

θinitial(m1, . . . ,mn, i) = (0, 0) (NAST-3)

α(〈a1, . . . , at〉 , θ, As)(a) = U
[
arg max
a∈As

v(θ(〈at−n+2, . . . , at, a〉^ , ρt))

]
(NAST-4)

where ρi = ρ(f(s, 〈a1, . . . , ai〉))

and v((q, n)) =

 q

n
+ cNAST

√
log Σ

n
if n > 0

+∞ if n = 0

where Σ =
∑
b∈As

θ2(〈at−n+2, . . . , at, b〉^)

where θ2 denotes the component of θ in N0

Ψ = {1, . . . , κ} (NAST-5)

ξ(s, 〈a1, . . . , at〉) = 〈(〈ai, . . . , ai+n−1〉 , ρi+n−1) : i = 1, . . . , t− n+ 1〉
(NAST-6)

ω((q, n), ρ,µ) = (q + µρ, n+ 1) (NAST-7)

Specification 5: n-gram average sampling technique (NAST)
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NAST is defined in Specification 5. Each record is an n-gram, i.e. a sequence
of n moves (NAST-1). Note that n is a parameter here; Specification 5 defines
a family of enhancements for n = 1, 2, 3, . . . . The information associated with a
record is the total reward and number of visits (NAST-2, NAST-3). The policy
uses these to select actions according to UCB1 (NAST-4). Backpropagation
updates the records associated with each sequence of n moves in the playout
(NAST-6), with the player who played the last move in the sequence as contex-
tual information (NAST-5). The total reward and number of visits are updated
in the natural way (NAST-7). Note that NAST with n = 1 is equivalent to
MAST (Section 4.3.2) with the UCB1 policy.

Stankiewick et al [49] demonstrate the effectiveness of n-gram techniques in
MCTS for the game Havannah, and Tak et al [45] show that similar techniques
work in a General Game Playing setting. In [50] we show that NAST works for
the three imperfect information games studied in the present paper (Section 7),
with n = 2 typically giving the strongest performance.

4.3.6. Other examples

The literature contains many other examples of MCTS enhancements that
involve either using information from external sources or capturing and reusing
information within the search. All such approaches designed to date can be
represented in the ICARUS framework. We chose AMAF, MAST, LGR and
NAST as examples because they capture and reuse information in significantly
different ways, whereas many enhancements are modifications of existing ones
(for example the different AMAF variants described in [51]). Furthermore, these
four enhancements have led to significant increases in the power of the MCTS
algorithm for diverse application domains. This section briefly describes how
some other enhancements from the literature can be defined within the ICARUS
framework.

Chaslot et al [52] introduce progressive bias and progressive unpruning, which
use a heuristic value function to bias selection and restrict expansion respec-
tively. In the ICARUS framework this can be achieved by encoding the heuristic
in the initial information function θinitial and modifying the policy function α
appropriately.

Nijssen and Winands [53] propose a modification of progressive bias called
progressive history, which replaces the heuristic function with values extracted
from simulations. Within the ICARUS framework this is similar to progressive
bias, except that the information is updated by the backpropagation function
ω instead of being initialised heuristically.

Rimmel and Teytaud [54] introduce contextual MCTS, which works by map-
ping each terminal history to several “tiles”, where a tile corresponds to a pair
of (not necessarily consecutive) actions played by the same player. During back-
propagation the average values of tiles are updated, and these values are used
to bias simulations. When contextual MCTS is encoded as an ICARUS, the
tiles become records and the policy and backpropagation functions are defined
in the natural way.
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R = R1 tR2 (COMB-1)

Θ = Θ1 tΘ2 (COMB-2)

θinitial(r) =

{
θ1

initial(r) if r ∈ R1

θ2
initial(r) if r ∈ R2

(COMB-3)

α(h, θ, As) =

{
α1(h, θ, As) if h is a selection or expansion node

α2(h, θ, As) if h is a simulation node.

(COMB.-4)

Ψ = Ψ1 tΨ2 (COMB-5)

ξ(s,h) = ξ1(s,h) ++ ξ2(s,h) (COMB-6)

ω(θ, ψ,µ) =

{
ω1(θ, ψ,µ) if θ ∈ Θ1

ω2(θ, ψ,µ) if θ ∈ Θ2

(COMB-7)

Specification 6: Sequential composition (.)

The MCTS-Solver enhancement introduced by Winands et al [15, 55] works
by backpropagating game-theoretic values through the tree. A terminal state is
always known to be a win or a loss; at a decision node for player p, if one of the
children is a known win then the node itself is a known win; if all of the children
are known losses then the node itself is a known loss. This can be implemented
by allowing nodes to take reward values of +∞ and −∞ to represent known
wins and losses respectively, and modifying backpropagation to handle these
values appropriately.

4.4. Combining ICARUSes

For a particular domain, the most effective information reuse approach is
often a combination of other approaches. Thus it is useful to have well-defined
ways to combine ICARUSes.

In this paper we consider three ways of combining ICARUSes. The first is
sequential combination. For two ICARUSes I1 = (R1,Θ1, θ

1
initial, α1,Ψ1, ξ1, ω1)

and I2 = (R2,Θ2, θ
2
initial, α2,Ψ2, ξ2, ω2), the combination I1 . I2 is defined in

Specification 6. Here t denotes disjoint union: the sets are assumed to be
disjoint, by relabelling elements if necessary. Each enhancement maintains its
own records and information; the policy functions are combined so that I1 . I2
uses the policy from I1 during selection and expansion, and the policy from I2
during simulation. Selection and expansion nodes are defined in Section 4.2.

The second way of combining enhancements is linear combination. For two
ICARUSes I1 and I2 as above, and a function λ : Θbase → [0, 1] (the mixing
coefficient, which is a function of the information for the baseline ICARUS as
defined in Specification 1), the combination λI1 + (1 − λ)I2 is defined as in
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Specification 6 with the exception of the policy function:

α(h, θ, As) = λα1(h, θ, As) + (1− λ)α2(h, θ, As) (COMB+-4)

where λ = λ
(
θbase ([h]^)

)
.

We can generalise this to define any convex combination of two or more en-
hancements in the natural way.

The third combination type is maxilinear combination. This is valid only for
ICARUSes where the policy function has the form

α(h, θ, As) = U
[
arg max
a∈As

v(a)

]
(13)

for some function v : A → R. For two ICARUSes I1 and I2 satisfying this
condition with functions v1 and v2 respectively, and a function λ : Θbase → [0, 1],
the combination λI1⊕(1−λ)I2 is defined as in Specification 6 with the exception
of the policy function:

α(h, θ, As) = U
[
arg max
a∈As

(λv1(a) + (1− λ)v2(a))

]
(COMB⊕-4)

where λ = λ
(
θbase ([h]^)

)
.

For example, this allows us to define RAVE [8] as

IRAVE = λRAVEIAMAF ⊕ (1− λRAVE)IBaseline (14)

where

λRAVE(q, n,m) =

√
k

3n+ k
(15)

for some constant k (which specifies the number of visits, i.e. the value of n,
for which λRAVE = 0.5). Again, maxilinear combination can be generalised to
combine more than two ICARUSes.

All ways of combining ICARUSes make use of information from the baseline
definition (Section 4.2) in some way, whether to determine the current stage
(selection, expansion or simulation) of the playout or to vary the combination
coefficient. Thus for a combination to make sense, it must incorporate the
baseline ICARUS.

4.5. Convergence properties

Kocsis and Szepesvári [7] prove that, for games of perfect information, UCT
converges on the optimal move in the limit. That is, as the number of iterations
tends to infinity, the probability of selecting a suboptimal move tends to zero.

Definition 6. Consider a history h, which when applied to the initial game
state s0 gives a state f(s0,h) = s with legal actions As. Let A∗s ⊆ As be the

21



set of optimal actions from state s. An ICARUS I with policy α is convergent
if, for all a ∈ As \A∗s, we have

lim
iterations→∞

α(h, θ, As)(a)→ 0 . (16)

That is, for every suboptimal action a, the probability assigned to a by the
playout policy tends to zero in the limit.

For the baseline ICARUS (Specification 1) applied to a game of perfect
information, we have the following two results:

Lemma 1. The baseline ICARUS is convergent.

Proof. It follows immediately from [7, Theorem 5] that (16) holds for α =
αbase.

Lemma 2. There exists an iteration number t such that, after t iterations, h
is a selection node.

Proof. From [7, Theorem 3], there exists a constant k such that, after t itera-
tions, the number of visits to h is at least dk log te. In particular there is a t
such that dk log te ≥ 2, which implies that h is expanded and is now a selection
node.

From these results, we can easily show that certain combinations of ICARUS
are convergent:

Theorem 1. Let I1 and I2 be ICARUSes such that I1 is convergent. Let
λ : Θbase → [0, 1] such that λ(q, n,m) → 0 as n → ∞. Then the following
ICARUSes are convergent:

(i) λI2 + (1− λ)I1;

(ii) λI2 ⊕ (1− λ)I1 (if defined);

(iii) I1 . I2.

Proof. The convergence of (i) and (ii) follows from the fact that λ tends to 0 as
the number of visits to a node tends to infinity. This ensures that I1 dominates
in the limit, so the combination inherits its convergent behaviour.

The convergence of (iii) follows from Lemma 2: after some finite number of
iterations, all nodes are selection nodes (recall from Definition 1 that we require
games to have a finite number of states). At this point, I1.I2 behaves identically
to I1 and thus converges.

It follows from Lemma 1 and Theorem 1 (ii) that RAVE (14) converges. The
ICARUS combinations used in the experiments in Section 8 (Table 1) all have
the form I1 . I2 for I1 ∈ {IBaseline, IRAVE}, and so also converge.

Note that these convergence results only apply to games of perfect informa-
tion. For games of imperfect information, we have no proof equivalent to that
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of Kocsis and Szepesvári [7] that ISMCTS converges. Indeed, we have some
empirical evidence that ISMCTS does not converge in the sense of Definition 6,
either oscillating between several policies or settling on a policy which does not
form part of a Nash equilibrium. Nevertheless, designing enhancements that
converge in the perfect information case seems to be a useful way to obtain
plausible play across all domains.

5. EPisodic Information Capture and reuse (EPIC)

Many games are episodic in nature: multiplayer games have a sequence
of opponents’ turns; ladder games such as Dou Di Zhu [31], President and
Cheat [56] have a sequence of moves until a “reset” action occurs; strategic
board and card games such as Lord Of The Rings: The Confrontation [30] and
Magic: The Gathering [57] have compound turns consisting of several individual
decisions.

In this section we introduce EPisodic Information Capture and reuse (EPIC),
an enhancement designed within the ICARUS framework. The unique feature
of EPIC is how information is captured, i.e. which states are considered to be
correlated. We consider a game to be divided into a number of time windows
called episodes, and share information between states that correspond to the
same position in different episodes. That is, states reached by the same se-
quence of actions from the beginning of their respective episodes, but where
the starting points of those episodes may be different. The aim of information
capture and reuse is to exploit the correlations between the values of nodes in
different parts of the game tree. EPIC is designed to exploit the correlation
between subtrees rather than individual nodes.

If the episodes truly are independent, this implies that the strength of a pol-
icy for a particular episode does not depend on the context of where that episode
occurs in the game. Thus strong play overall can be achieved by constructing a
good policy for each episode, and combining these policies to obtain a policy for
the full game. The fact that the same episode occurs in several different parts
of the game tree implies that a näıve tree search algorithm must rediscover the
strong episode policy many times. EPIC aims to discover the episode policy
only once, and reapply it throughout the game tree.

The assumption that episodes are independent of context may be reasonable
but is never strictly true in real games. In this paper we combine EPIC with the
baseline player, with EPIC used only as a simulation policy. This ensures that
the baseline tree policy can tailor itself to the context of the current episode if
that context matters, whilst the simulation policy that uses episode information
but ignores context is still likely to be much stronger than a random policy.

The idea of episodes is not specific to any particular game, but it is also not
universal. Games such as Chess and Go do not have a natural episodic structure,
or rather the highly spatial nature of these games means that a purely temporal
notion of episode does not make sense. However, even for these games, notions
such as combinations in Chess [58] and joseki or tesuji in Go [59, 60] are a
type of spatial episode. In this paper we will consider only temporal episodes,
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consisting of consecutive game turns. Nevertheless, a spatially episodic nature
could conceivably be exploited by enhancements similar to EPIC.

5.1. Definition of EPIC

Although episodes do not feature in the formal definition of a game given in
Section 3, the division into episodes is usually highly intuitive when it exists,
for example identifying the start of a new round or hand in a card game or
a particular event happening such as a piece being captured. In other words,
it is a piece of domain knowledge which does not require expert insight into
the game. In most cases the episode information can be read directly from an
implementation’s representation of the game state.

We now introduce some notation for dealing with episodes. Let E be a finite
nonempty set of episode labels. Define e : S → E ∪ {′′}, the episode function.
The element ′′ /∈ E is the continuation label.

Consider a game Γ. An episode of Γ is a subtree of Γ’s game tree such that

1. for the subtree’s root node sr we have e(sr) ∈ E;

2. for all leaf nodes sl of the subtree, either e(sl) ∈ E or sl is a terminal
state;

3. for all other nodes s we have e(s) = ′′.

If the initial state has episode label in E then the episodes partition the game
tree, as illustrated in Figure 1.

The position-in-episode of a history 〈a1, . . . , at〉 ∈ A∗ is the pair

η(〈a1, . . . , at〉) = (e(si), 〈ai+1, . . . , at〉) (17)

where si = f(s0, 〈a1, . . . , ai〉) and i is maximal such that e(si) 6= ′′. The
position-in-episode specifies the label of the current episode and the suffix of
the history restricted to that episode. If a state has a position-in-episode of
(e1, 〈a1, . . . , at〉), then that state can be reached by starting from some state
with episode label e1 and applying actions a1, . . . , at. In particular if e(s) 6= ′′,
the position-in-episode of state s is (e(s), 〈〉). The two circled nodes in Figure 1
have the same position-in-episode. The position-in-episode of a move history
is defined similarly to that of a state. Positions-in-episode are always defined
relative to the initial state s0 of the game, regardless of the current state.

Conceptually an episode should be somewhat independent of its context:
when episodes with the same root label appear in different parts of the game
tree, they should look similar and have similar outcomes for all players. In other
words, if two different histories have the same positions-in-episode, they should
have similar rewards. This statement is deliberately vague: the assignment of
episode labels to states is a decision to be made when designing the AI agent
rather than a part of the formal game definition. Examples of episode functions
for our experimental domains are given in Section 7.

Specification 7 defines EPIC with game specific episodes as an ICARUS. The
records used by EPIC are the positions-in-episode (EPIC-1), each of which has
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Figure 1: In this game tree, each node is labelled with its episode label. The shaded regions
show the partitioning of the tree into episodes. The circled nodes have the same position-in-
episode, namely (e2, 〈b2, b5〉).
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R = E ×M∗ (EPIC-1)

Θ = Rκ × N0 × N0 (EPIC-2)

θinitial(e,h) = (0, 0, 0) (EPIC-3)

α(h, θ, As) = U
[
arg max
a∈As

v(θ(η([h++ a]^)))

]
(EPIC-4)

where v((q, n,m)) =

qρn + cEPIC

√
logm

n
if n > 0

+∞ if n = 0

Ψ = {ψavail, ψvisit} (EPIC-5)

ξ(s, 〈a1, . . . , at〉) = 〈(η([〈a1, . . . , ai〉]^), ψvisit) : 0 ≤ i ≤ t〉
++ 〈(η([〈a1, . . . , ai−1, a〉]^), ψavail) : 0 < i ≤ t,

a ∈ A(f(s, 〈a1, . . . , ai−1〉)), a 6= ai〉 (EPIC-6)

ω((q, n,m), ψ,µ) =

{
(q + µ, n+ 1,m+ 1) if ψ = ψvisit

(q, n,m+ 1) if ψ = ψavail

(EPIC-7)

Specification 7: Episodic information capture and reuse (EPIC)

the standard ISMCTS information of total reward, visit count and availability
count (EPIC-2, EPIC-3). The positions-in-episode for a particular episode label
can be organised into a tree structure. Each history is mapped to its position-
in-episode. If EPIC is combined with the baseline algorithm using sequential
combination then during simulation, subset-armed UCB1 selection is applied
according to the current position-in-episode (EPIC-4): effectively this means
that the simulation policy for the overall search is provided by the tree policy
in the episode trees. Rewards are backpropagated as in the baseline case, but
in the episode trees rather than the full tree (EPIC-5, EPIC-6, EPIC-7).

6. Comparing ICARUSes

Having a common notation for information reuse enhancements provides a
tool for their analysis and comparison. We can identify common themes that oc-
cur in several enhancements, easily see which enhancements deviate from them,
and use them as building blocks to define new enhancements. For example, we
can make the following observations from Specifications 1–4 and 7:

• Baseline, AMAF and EPIC all have records that are, or contain, move
histories (Base-1, AMAF-1, EPIC-1). This implies that their records have
a tree or forest structure. In contrast, MAST and LGR have a flat record
structure with one record per move or action (MAST-1, LGR-1). NAST
is between the two extremes, with one record per sequence of n moves
(NAST-1).
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• For all enhancements studied here with the exception of LGR, the informa-
tion associated with a record consists of a total reward (vector or scalar),
a visit count, and in some cases an availability count (Base-2, AMAF-2,
MAST-2, NAST-2, EPIC-2).

• Baseline, AMAF, NAST and EPIC all use some variation on the UCB1
policy (Base-4, AMAF-4, NAST-4, EPIC-4).

• LGR is the only enhancement whose policy explicitly sets the probabilities
of some moves to 1, giving a simulation policy that is more deterministic
than for other enhancements (LGR-4).

• If we ignore updates for availability, most of these ICARUSes update one
record per state visited in the playout (Base-6, MAST-6, LGR-6, NAST-
6, EPIC-6). The exception is AMAF, which potentially updates several
records per playout step (AMAF-6).

At a higher level, we can identify sets of nodes which share information.
There are two ways in which information can be shared between nodes via
records:

1. nodes use information from the same record during playout and update
that record during backpropagation; or

2. nodes use information from different records but a visit to one node causes
both records to be updated.

In other words, to share information we can either write to one record that is
read by many nodes, or write to many records that are each read by one node.
MAST, NAST, LGR and EPIC are of the former type, whereas AMAF is of the
latter type.

Figure 2 illustrates this information sharing. In each tree, information is
shared between the nodes connected by a dotted line. Comparing these types of
pictures with our intuition about the game, particularly which states we expect
to be correlated, can give us insight into which enhancements are likely to work
well for which games. Looking at Figure 2 and the corresponding ICARUS
definitions, we can make the following observations about the type of games for
which each enhancement should be effective:

• AMAF: Works well for games where the strength of an action is often
independent of time. This has shown to be true in games such as Go [3]
and Hex [10], where the RAVE enhancement works well. Both of these
games are characterized by moves which, with a few exceptions, are fixed
in place once made.

• MAST: Effective when the quality of an action is independent of the state
from which it is played. This is effective in General Game Playing where
little is known about the state and it is somewhat true for most games.
(Arguably any interesting game that people would play will at least slightly
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Figure 2: A pictorial representation of node correlation for various information capture and
reuse strategies. In each case, the strategy is based on the notion that the values of the nodes
connected by a dotted line are correlated, and thus sharing information between those nodes
is beneficial.

satisfy this property, as it would otherwise be difficult for human players
to develop an intuition of strategy). This is similar to AMAF, but assumes
even less about the dependence of action value on context.

• LGR: Works well for games with a notion of “sente” (such as Go), where
some moves imply a certain reply is necessary.

• NAST: Generalises the notion of replies in LGR, so is useful when the
reply is to the previous n− 1 moves rather than the previous move. Note
that LGR and NAST with n = 2 both use the same correlation structure,
so any difference in their performance is a result of the exact way in which
the captured information is reused in the playouts.

• EPIC: Useful in games with an episodic nature (e.g. ladder-based card
games) or complex compound turns (such as LOTR:C; see Section 7.3),
where contextual information can be learned from these episodes.

The information capture methods of MAST, LGR, NAST and EPIC all
belong to a class which learns the value of actions given some episode preceding
the action. In the case of MAST, LGR and NAST the episodes are of fixed
length (1, 2, and a fixed parameter n respectively) whereas EPIC uses episodes
that are aligned to the natural episodic structure of a particular game. MAST,
LGR and NAST are based on the game-independent notion of n-grams with a
fixed n, whereas EPIC allows n to differ over the playout according to game-
specific criteria.
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There are also possibilities for other new types of enhancement that can be
built with the ICARUS framework. Figure 2 illustrates enhancements which
exploit a particular type of correlation between states in a game, but any other
type of correlation can be encoded as an information capture enhancement
within the ICARUS framework. Similarly there are many ways of injecting
knowledge into the MCTS algorithm, with tree selection biasing and heavy
playouts being amongst the most common [1, 61]. New techniques for injecting
knowledge into MCTS can be combined with any existing information reuse
enhancement. One potential application for the ICARUS framework could be
to use techniques from machine learning (for example genetic programming) to
automatically search the space of possible enhancements to discover new ones
which work for a particular game. There are currently no widely used enhance-
ments to MCTS which deal explicitly with hidden information and uncertainty
in games. ICARUS provides a framework for exploring new enhancements in
this area, for example considering information asymmetry when performing in-
formation capture.

7. Experimental domains

In this section we present the games that form the basis of our empirical
analysis. For each game, we also present the corresponding EPIC episode struc-
ture.

7.1. Dou Di Zhu

Dou Di Zhu is a three-player ladder-based (or climbing) card game, played
with a standard deck of 52 cards plus two jokers, hugely popular in China [31,
62]. One of the players is designated the Landlord, with the other two players in
coalition against him. At the beginning of the game, the entire deck is dealt to
the players: 20 cards to the Landlord, and 17 to each of the other players. The
game is played in several rounds, with each round consisting of a leading play
(a combination of cards from one of several categories: singleton, pair, straight
etc.) after which players take turns to play cards of the same category but
higher rank, or pass if they are unable or unwilling to play cards. The winner
is the first player to play out all of the cards from their hand; if the winner
is a non-Landlord player then both non-Landlord players win. For a complete
description of the rules see [62].

Our previous work on this game [63, 31, 30] showed that ISMCTS is com-
petitive with existing commercial AI [30], although a simpler multiple tree de-
terminization approach (similar to those used for Bridge [64] and Klondike Soli-
taire [34]) performs slightly better. The main strategic element in Dou Di Zhu
is subdividing one’s hand into non-overlapping groups, given that some groups
may render others unplayable (for example if holding cards 3, 4, 4, 5, 6, 7, playing
the pair 4, 4 means that the straight run 3, 4, 5, 6, 7 is unavailable). All cards
must eventually be played, so playing groups in such a way that one is not left
with a weak hand towards the end of the game is key.
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We define the EPIC episode function for Dou Di Zhu as follows. Set E =
{L1, L2, L3} and

e(s) =

{
Li if player i makes a leading play from state s

′′ otherwise.
(18)

Here an episode is a stream from one leading play to the next. EPIC aims to
improve on a weakness of ISMCTS for Dou Di Zhu caused by the high branching
factor associated with leading plays (several hundred in some cases [31]). EPIC
helps to more accurately model the sequence of plays that follows each leading
play, and thus give a more accurate evaluation of each leading play, without
having to rediscover this sequence in several parts of the tree.

7.2. Hearts

Hearts is a four-player trick taking card game played with a standard 52-
card deck. Cards in the ♥ suit have a point value of 1 each and the Q♠ card
has a point value of 13. The goal is to score as few points as possible, i.e. to
avoid winning tricks with those cards in them. There is one exception to this
goal: taking all thirteen ♥ cards and Q♠ in a round is called shooting the moon,
and causes every player to score 26 points except the player who shot the moon.
Shooting the moon is a risky strategy: the reward for success is high, but so is
the cost of failure. For a complete description of the rules see [65].

Previous work on MCTS for Hearts [66] has treated the game as one of
perfect information, i.e. played with all cards face up. We use ISMCTS to handle
the imperfect information explicitly. Other approaches applied to Hearts include
maxn search with various pruning mechanisms and reinforcement learning [67,
68].

Hearts is played over several rounds, the game ending when any player
reaches a score threshold (50 points in our experiments). It would be possi-
ble to simulate only to the end of the current round and have our players seek
to minimise their per-round score. However this removes some of the strate-
gic richness from the game, as certain decisions (such as whether to force Q♠
upon a certain player, or whether to attempt shooting the moon) can depend
on the overall game score. To capture this, we simulate offline a large number
of rounds (10 000 for our experiments), and construct a database of per-round
scores. During the search, we simulate to the end of the current round as usual,
and then sample round scores from this database until the score threshold is
reached. This is equivalent to simulating to the end of the game, but much more
efficient.

To define the episode function for EPIC, we set E = {D,L1, L2, L3, L4} and

e(s) =


D if s is the chance state for the deal in a new round

Li if player i begins a trick from state s

′′ otherwise.

(19)
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The first episode in a game of Hearts encompasses the dealing and card passing
stages; subsequent episodes are single tricks. Here EPIC makes use of the fact
that similar tricks may appear in many different places in the search tree.

7.3. Lord of the Rings: The Confrontation

Lord of the Rings: The Confrontation (LOTR:C) [69] is a two-player strategy
board game. Each player has nine character pieces, each with its own strength
value and special ability. Each player can see the identities and locations of his
own pieces, but only the locations of his opponent’s pieces. If a player moves a
piece into a square occupied by his opponent, combat ensues: the identities of
the attacking and defending pieces are revealed, and the players simultaneously
choose a card each which affects the outcome of combat. The two players have
asymmetric win conditions: the “Light” player wins by moving one of his pieces
(Frodo) into the opponent’s home square (Mordor), whereas the “Dark” player
wins by killing Frodo in combat.

ISMCTS performs strongly for LOTR:C [30], both against determinized
MCTS approaches and against human players. We also found that the asym-
metric nature of the game has an influence on the relative strengths of AI tech-
niques: handling hidden information is important to the Dark player, whereas
for the Light player it is more beneficial to concentrate on planning one’s own
moves further ahead.

For EPIC’s episode function, we set E = {M1,M2} and

e(s) =

{
Mi if there is no combat in progress and ρ(s) = i

′′ otherwise.
(20)

An episode begins when a player moves a piece. If this movement does not result
in combat, the episode ends immediately. Otherwise, the episode continues until
combat is resolved. The benefit of EPIC here is twofold: it collects statistics
for each movement action in a manner similar to MAST, and it refines the
simulation policy for combat.

7.4. Checkers

Checkers, or Draughts, is a two-player game of perfect information, played
on an 8 × 8 board with 12 pieces per player. Pieces may be moved forwards
to a diagonally adjacent empty square, or may jump diagonally forwards by
two squares if the target square is empty and the intervening square contains
an opponent piece. Jumping over an opponent’s piece causes it to be captured,
and removed from the game. Captures may be chained together, if the jumping
piece can immediately capture another piece. Otherwise the turns alternate
between the two players after each move. In the variant of Checkers studied in
this paper, captures are forced: if a capture move is available then it must be
played, although if more than one is available the player may choose which one
to take. If a piece moves onto the opponent’s home row, it becomes crowned and
may subsequently move and capture backwards as well as forwards. A player
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wins by leaving their opponent with no legal moves, i.e. by blocking or capturing
all their pieces.

Draws (stalemates) are common in checkers; indeed, perfect play by both
sides will always lead to a draw [70]. AI programs capable of perfect play exist,
such as Chinook [70]. As Checkers was solved more than a decade before the
invention of MCTS, there has been little work on developing strong MCTS
players. However Checkers is often used as a test domain for enhancements in
General Game Playing systems [46, 45].

To apply EPIC to Checkers, we set E = {M1,M2} and

e(s) =

{
Mi if a non-chained capture move is available, and ρ(s) = i

′′ otherwise.
(21)

Here a “non-chained” capture is one which does not continue a chain of captures,
but may start one. An episode begins when a capture is made, and ends the
next time a capture is made (by either player) on a subsequent turn.

7.5. Othello

Othello, or Reversi, is a two-player game with perfect information, played
on an 8 × 8 board. The game starts with the centre four squares of the board
containing two black and two white pieces placed diagonally opposite each other.
A move consists of placing a piece on the board; for the move to be legal, it must
sandwich a horizontal, vertical or diagonal line of one or more opponent pieces
between the newly placed piece and an existing own piece. The sandwiched
pieces are captured, and converted to the colour of the player who moved. If
(and only if) a player has no legal moves, he must pass; when both players pass
consecutively, the game is over. The player with the most pieces on the board
wins the game.

Strong Othello programs exist which are capable of beating the strongest
human players, one of the first such programs being Logistello [71]. More re-
cently, MCTS has been combined with offline learning methods to produce
strong play [72, 73, 74].

The EPIC episode function is defined by E = {M1,M2} and

e(s) =

{
Mi if the previous move was on the edge of the board, and ρ(s) = i

′′ otherwise.

(22)
An episode begins on the turn after a player places a new piece on one of the 28
squares around the edge of the board. This captures the strategic notion that
controlling the edges of the board is important: pieces placed on the edge are
difficult to capture but create opportunities to capture opponent pieces.

7.6. Backgammon

Backgammon is a two-player game which has stochasticity in the form of dice
rolls, but otherwise has perfect information (i.e. there is no information hidden

32



from one player but visible to another). The board has 24 spaces, which are
numbered 1–24 in opposite directions for the two players. Each player begins
with 15 pieces in a standard initial setup. The aim of the game is to move all
of one’s pieces towards space 1 and off the end of the board. A player’s turn
begins with a roll of two dice. The player then takes two moves, one for each
of the two rolled numbers, moving a piece forward the given number of spaces.
The same piece can be moved twice in one turn. If the two dice have the same
number, the player makes four moves instead of two.

A piece cannot be moved to a space occupied by two or more opponent pieces.
However a piece can be moved to a space occupied by a single opponent piece,
in which case the opponent piece is captured and moved to the bar, equivalent
to space number 25. If a player has pieces on the bar, they must move them
back onto the board before they may move any other pieces. A common basic
strategy in Backgammon is to force the opponent to skip several turns, by
capturing a piece having blocked the spaces into which it could be moved back
onto the board. When all of a player’s pieces are on spaces 1–6, pieces may be
moved off the board (beyond point 1) and removed from the game. The first
player to remove all their pieces in this way is the winner.

Strong AI players for Backgammon, such as TD-Gammon [75], are capable
of beating the strongest human players. MCTS has also been demonstrated to
produce strong decisions in Backgammon [76].

The compound turns of Backgammon give a natural episode structure. We
set E = {R} and

e(s) =

{
R if the dice are about to be rolled

′′ otherwise.
(23)

Thus an episode consists of a full turn: the dice roll and the two or four moves
that follow it.

8. Experiments

A wide range of experiments were conducted to compare ICARUSes and
combinations of ICARUSes for the six domains listed in Section 7. We aim
to compare the performance of enhancements for games of perfect and imper-
fect information, and investigate whether combinations of enhancements can be
greater than the sum of their parts.

In each experiment our opponent was an unenhanced player using MO-
ISMCTS (for games of imperfect information) or UCT (for games of perfect
information), with 5000 playouts per decision in all cases. In [30] we showed
the MOSIMCTS player was on a par with the strongest setting of a commercial
Dou Di Zhu AI developed by AI Factory Ltd4. In [30] we also showed that
MO-ISMCTS is on a par with intermediate-to-expert level human players for

4www.aifactory.co.uk.
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LOTR:C. For Hearts we conducted a trial of our MO-ISMCTS player against
the AI for Hearts which ships with the Microsoft Windows 7 operating sys-
tem (arguably one of the most played AI opponents of all time), again showing
strength parity. For Checkers, Othello and Backgammon, unenhanced UCT
is significantly worse than state-of-the-art AI players, but largely because the
state-of-the-art is so advanced for these games. We have found unenhanced
UCT to be around the level of a novice human player for these games.

We compare the sixteen combinations of ICARUSes listed in Table 1, for the
six games described in Section 7. The component enhancements used are:

• the baseline ICARUS (Section 4.2);

• RAVE (Section 4.4), itself based on AMAF (Section 4.3.1);

• MAST (Section 4.3.2);

• LGRF, i.e. LGR with forgetting (Section 4.3.4);

• NAST (Section 4.3.5) with an n-gram length of n = 2.

Where the enhancements use parameters, we performed an initial round of pa-
rameter tuning experiments to set the values for the main experiment. The
parameter values are c = 0.7 for the exploration constant in both the baseline
player and NAST, k = 250 for RAVE, and τ = 1 for MAST. These values give
consistently good performance (relative to other parameter settings) across all
our games.

In all games, a win has a reward value of 1 and a loss a value of 0. If a draw
is possible, it has a value of 0.5. In Hearts, finishing in first place has a value of
1, in last place a value of 0, and in second or third place a value of 0.5. These
values are used by the MCTS players, but not in the reporting of results in this
section: that is, Figures 3–5 count the win rate (i.e. number of wins), not the
cumulative reward over all trials.

The ICARUSes listed in Table 1 cover all subsets of the four enhancements
tested here. Each enhancement was originally designed for a specific phase of
the MCTS iteration: RAVE [8] for selection, and MAST [43], LGR [47] and
NAST [27] for simulation. The sequential combinations, using the . operator,
are defined to use each enhancement only for the appropriate phase. Where
we have more than one enhancement for one of the phases, we combine them
using a linear combination (as described in Section 4.4) with equal weights.
Equivalently, at each step in the simulation we choose one of the enhancements
at random and then choose the action according to that enhancement’s policy.
For example if the simulation enhancement is 1

2 (ILGRF + INAST), the simula-
tion plays according to LGRF with probability 1

2 and according to NAST with
probability 1

2 . The definition (Equation 14) of IRAVE as a maxilinear combina-
tion of IAMAF and IBaseline with decaying weight λRAVE is as used by Gelly and
Silver [8].

For a κ-player game, we play one instance of the ICARUS combination
in question against κ − 1 instances of the baseline player (unenhanced MO-
ISMCTS). Each algorithm (enhanced and baseline) uses 5 000 MCTS iterations
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Name NAST RAVE MAST LGRF ICARUS specification
– IBaseline

N • IBaseline . INAST2

R • IRAVE

NR • • IRAVE . INAST2

M • IBaseline . IMAST

NM • • IBaseline .
1
2 (IMAST + INAST2)

RM • • IRAVE . IMAST

NRM • • • IRAVE .
1
2 (IMAST + INAST2)

L • IBaseline . ILGRF

NL • • IBaseline .
1
2 (ILGRF + INAST2)

RL • • IRAVE . ILGRF

NRL • • • IRAVE .
1
2 (ILGRF + INAST2)

ML • • IBaseline .
1
2 (IMAST + ILGRF)

NML • • • IBaseline .
1
3 (IMAST + ILGRF + INAST2)

RML • • • IRAVE .
1
2 (IMAST + ILGRF)

NRML • • • • IRAVE .
1
3 (IMAST + ILGRF + INAST2)

Table 1: ICARUS combinations for the main experiment in Section 8

per decision. For Dou Di Zhu the ICARUS player plays as the Landlord against
two non-Landlord baseline players. For Hearts the ICARUS player plays against
three baseline players. For LOTR:C the ICARUS player plays as both Light
and Dark against a baseline player (and due to the asymmetry of the game
we consider the results for each player separately). For Checkers, Othello and
Backgammon the ICARUS player plays against a baseline player, playing half
the games as white and half as black. For each experiment we played a large
number of games (between 1000 and 2500) across a cluster of PCs, using just
over one CPU-year in total. Win rates are calculated with Clopper-Pearson
intervals [77] at the 95% confidence level. Each game of Dou Di Zhu, LOTR:C
and Backgammon has a clear winner with no possibility of a draw. In Hearts
we count finishing in first or equal first place as a win, and any other outcome
as a loss. In Checkers (where draws are common) and Othello (where draws
are possible but rare), we only count the number of wins; draws are counted as
losses.

Average results for each enhancement are presented in Figure 3. For each
enhancement we aggregate the results for those combinations in Table 1 which
feature the given enhancement, and compare with the results for those com-
binations which do not. For example in the pairs of bars labelled “RAVE”,
the left-hand (diagonally shaded) bar sums the results for the eight combina-
tions in Table 1 for which the RAVE column is blank, and the right-hand (solid
shaded) bar for the eight combinations where the RAVE column is marked •.
Where each combination in Table 1 was tested for 1000 trials, each of the bars
in Figure 3 represents 8000 trials.

Results for individual combinations are shown in Figure 4. The dotted lines
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indicate 95% confidence intervals for evenly-matched UCT (perfect information)
or MO-ISMCTS (imperfect information) players. Any AI with results above this
band is significantly better than an unenhanced player.

In Figure 3 we see that NAST provides a significant improvement for almost
all games (the exceptions being LOTR:C as Light and Checkers, where there
is no significant difference between players with and without NAST). Analysis
of variance (ANOVA) over all results shows that NAST yields an improvement
significant at the 99.9% level. It is interesting to note that NAST provides an
improvement even in cases where LGRF does not, despite the two enhancements
being based on a similar principle of learning the value of moves as replies to
previous moves. This shows the influence of the precise way in which this
information is used by the simulation policy.

Figure 3 also shows that RAVE is not effective in the imperfect information
games. It is actually detrimental to performance in Hearts, and as the Dark
player in LOTR:C, where the order in which moves are played is important to
the strategy of the game. This makes intuitive sense: for example in Hearts
the value of a particular card is very much dependent on when that card is
played. For example, leading a trick with K♠ will be either a reasonably good
or a terribly bad idea, depending whether the high-scoring Q♠ has already been
played, so that AMAF/RAVE will fail to correctly learn whether K♠ is a good
move. For Dou Di Zhu and LOTR:C as the Light player, RAVE did not make
matters worse, but nor did it significantly improve playing strength. The only
game where RAVE is significantly beneficial in our experiments is Checkers.

MAST, LGRF and NAST are more robust enhancements than RAVE: they
are sometimes beneficial, and never detrimental to a statistically significant de-
gree. As observed by Tom and Müller [25], RAVE performs poorly in situations
where relative ordering of moves is important. However MAST is based on a
similar principle, and is more robust. One intuition for this is that RAVE alters
the tree policy in a way that can reinforce the assumption that move ordering
is not important in situations where this assumption is false. MAST on the
other hand learns whether a move is good or bad on average. This implies that
if move ordering is not important to the goodness of a move, MAST will rein-
force selection of this move, whereas if move ordering is important MAST will
enforce no preference over selecting the move, falling back to the behaviour of
the default random policy of MCTS. Thus the potential for MAST to learn the
wrong thing, as opposed to learning nothing at all, is much less than for RAVE.

For MAST we conducted further experiments to investigate the impact of
different reuse methods [27]. The policies in question were the four described
in Section 4.3.2: Gibbs distribution, ε-greedy, roulette wheel and UCB1. We
observed that ε-greedy and UCB1 offered the most consistently strong simula-
tion policy, and that the Gibbs sampling approach which is standard in MAST
is generally slightly worse than the other methods, although sensitivity to the
sampling method is not terribly marked.

In Figure 4 we see that linear combinations of the enhancements are often
greater than the sum of their parts. LGRF produced limited improvements on
its own, but it enhanced other techniques (e.g. consider NL beat both N and
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Figure 3: Average playing strength results for the four ICARUSes tested for each game. In
each pair of bars, the left-hand bar is the average win rate over the eight combinations (out
of the 16 listed in Table 1) not featuring the enhancement in question, and the right-hand bar
the average over the eight combinations that do feature the enhancement.
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(a) Dou Di Zhu (b) Hearts
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(c) LOTR:C (Light player) (d) LOTR:C (Dark player)
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(e) Checkers (f) Othello
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(g) Backgammon
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Figure 4: Playing strength results for ICARUS combinations (the names are listed in Table 1).
For each ICARUS the percentage of games won is presented along with 95% confidence in-
tervals. In each experiment 5000 MCTS iteration were used and the opponents were all
baseline players (−). Dashed lines show the empirically measured 95% confidence interval for
evenly-matched UCT or MO-ISMCTS players; any player with results above this baseline is
significantly stronger than unenhanced UCT or MO-ISMCTS.
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L for Dou Di Zhu, despite L being significantly worse than −, and ML beat
both M and L for LOTR:C as Dark despite no significant difference between −
and L). MAST was generally effective across all games, but proved even more
effective in combination (e.g. consider RML beat all of R, M and L for LOTR:C
as Light and ML beat both M and L for LOTR:C as Dark). NAST performed
strongly across all games, but was most effective in combination for Dou Di Zhu
(NL beat both N and L) and LOTR:C as Light (NRL beat all of N, R and L).

Analysis of the MCTS trees shows that the final number of visits for the
chosen action is significantly (often 10–30%) higher for NAST than for the
baseline and LGRF, RAVE or MAST. Hence NAST is converging more quickly
to an action which is generally stronger. The average reward assigned by NAST
to the chosen action is also markedly different from that in trees using other
enhancements, and presumably this value is more accurate given the increased
playing strength due to NAST. Of the enhancements tested here, only RAVE has
a significant impact on the depth of the MCTS tree. RAVE tends to construct
deeper trees, with the deepest node being on average one ply deeper than for
the other algorithms. That RAVE is detrimental despite this suggests that it is
expanding too deeply the “wrong” areas of the tree, although the fact that the
degree of exploitation at the root is the same as without RAVE suggests that
this mostly occurs at levels in the tree below the root.

Our experimental results for NAST shows that learning contextual values
for moves is an effective way of improving the simulation policy. EPIC provides
a way of refining this context in a game-specific way. To determine whether
this refinement is helpful, we tested EPIC against NAST with n = 2. Both
enhancements use UCB1 as a simulation policy, the difference being the context
in which the multi-armed bandit statistics are collected: for EPIC the context
is game-specific, whereas for n = 2 NAST the context is the previous move in
the game (similar to LGRF). EPIC uses the episode functions for each game
described in Section 7. Results are shown in Figure 5. In Othello we find that
NAST is significantly better than EPIC; in all other cases, NAST and EPIC
have the same performance within 95% significance. As a corollary to this, we
can conclude that EPIC is at least as robust as NAST for the games studied
(even in the case of Othello, EPIC significantly outperforms the baseline player).

The effectiveness of EPIC is particularly marked for Dou Di Zhu, which
has a strongly episodic nature, since during an episode (a ladder) many cards
cannot be played, but these unplayable cards will be played in future episodes.
Furthermore, the order of episodes is not often important for Dou Di Zhu.
There is also some independence between tricks in Hearts and between turns in
LOTR:C and Backgammon, though less than between ladders in Dou Di Zhu,
so that the improvements due to EPIC, while significant, are not so marked.
Checkers and Othello lack a natural episodic structure, so instead we use basic
notions of strategically important moves (captures in Checkers and edge piece
placement in Othello) to delimit episodes. This works in both games, but for
Othello proves less effective than simply fixing the episode length to 2 (i.e. using
NAST).

EPIC remains an interesting method for injecting knowledge into search in
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(c) LOTR:C (Light player) (d) LOTR:C (Dark player)
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(e) Checkers (f) Othello
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Figure 5: Playing strengths (against baseline players) for a baseline player (IBaseline), a player
using EPIC for simulations (IBaseline . IEPIC), and a player using NAST with n-gram length
2 (IBaseline . INAST2, with INAST2 as defined in Specification 5 with n = 2) over 1000 trials
each.
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other game domains, but for these games it is clear that the episodes do not need
to be so carefully chosen. Both EPIC and NAST are methods for learning useful
lines of play for the playout policy; EPIC achieves this by learning fragments of
lines delimited by game-specific episodes, whereas NAST with n = 2 essentially
learns a Markov model. For the games tested here the Markov model is rich
enough to capture useful information, but for other games a more sophisticated
model such as EPIC may be required.

9. Conclusion and future work

In this paper we present the ICARUS framework, a powerful tool for ex-
pressing information capture and reuse enhancements in MCTS. The ICARUS
framework is expressive enough to enable all existing MCTS enhancements to
be defined and provides a new tool for discovery of novel types of enhancement.
ICARUS provide a consistent method for expressing how an MCTS enhance-
ment captures and reuses information, enabling us to easily analyse similarities
and differences between enhancements and define composition operators which
are compatible with all ICARUSes. We have presented information capture
and reuse as the principles upon which all general purpose enhancements to
MCTS are based, and separated the mechanisms for capture and reuse as a tool
for understanding existing enhancements and designing new ones. We found
the ε-greedy and UCB1 algorithms to be particularly effective at balancing the
exploration and exploitation of moves during MCTS simulations.

Considering which states map to which records during playout and backprop-
agation gives a clear indication as to which parts of the tree share information.
We conjecture that the effectiveness of information capture is determined by
the degree of correlation of state values in these regions of the underlying game
tree. In Section 6 we discussed how the effectiveness of these enhancements can
be explained in the context of sharing information between states.

We developed the EPIC enhancement within the ICARUS framework by
considering the notion of episodes, which turns out to generalise readily to
several other games. Using episodes based on the episodic structure of each
game proved to be effective across our test domains. Many games have a natural
episodic nature and EPIC may prove to be useful in exploiting this. MAST,
LGR and NAST may be viewed as techniques which reuse information based
on short episodes, of length 1 for MAST, length 2 for LGR, and arbitrary fixed
length n ≥ 1 for NAST. The fact that NAST with n = 2 performs at least
as well as EPIC in our experiments suggests that, for the games studied here,
the choice of episode does not require careful injection of knowledge. This is
unlikely to be true for all games.

The enhancements we consider are general purpose, in the sense that they
can be applied to any game without injection of knowledge. RAVE, MAST,
LGR and NAST are general purpose; strictly speaking EPIC is not, but the
degree of domain knowledge required is small. General purpose enhancements
are useful tools for tackling new domains where expert knowledge is not avail-
able, and essential for domains such as General Game Playing where input of
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external knowledge is not possible. No general purpose enhancement has yet
been discovered that is beneficial in all domains, and the existence of such an
enhancement seems unlikely, but some are more robust than others: even in
domains where they provide no clear benefit, they are usually not detrimental.
Robustness is an essential criterion in choosing a general purpose enhancement.
We have demonstrated for our test domains that MAST, LGR, NAST and EPIC
are robust while RAVE is not.

The ICARUS framework enables combination operators for enhancements
to be defined, with the strongest play often coming from a combination of en-
hancements. One possible direction for future work is to develop more robust
composition operators, for example ones based on majority voting rather than
weighted sums, effectively adopting an ensemble approach to enhancement com-
bination.

We have also shown that enhancements designed for perfect information
games can be effective in imperfect information games, despite the increased
level of uncertainty and sparsity of search. Current MCTS enhancements do
not explicitly address information asymmetry and stochasticity in games. How-
ever we could define new ICARUSes that consider information asymmetry in
information capture, for example by sharing information between states that
are distinguishable to a player but indistinguishable to their opponent. The
MCTS algorithm is also easily parallelisable [78], which suggests a new class
of enhancements that capture information in one search thread and reuse it in
others running concurrently. This would require modification of Algorithm 1 to
perform a multithreaded variant of MCTS, and locking mechanisms to ensure
the same record is not updated while another thread is reading or updating it,
but otherwise ICARUS enhancements could be used without modification.

In future work we plan to investigate the automation of designing and choos-
ing enhancements for a particular game, and ICARUS provides a framework for
doing this. For example, we could directly measure the correlation between dif-
ferent areas of the tree and use this information to select the most appropriate
enhancements from a predefined library. This could be done offline before the
search begins, or online to dynamically activate and deactivate enhancements
as the search progresses. Additionally, we can automatically discover new en-
hancements using evolutionary techniques; the ICARUS framework could give
a compact yet expressive representation for genetic programming or other evo-
lutionary algorithms. This kind of dynamically self-enhancing system combined
with MCTS would take us several steps further towards a truly general pur-
pose AI system for acting in challenging games and complex sequential decision
problems.
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